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Abstract- Android is now the most used mobile operating
growing at breakneck speed and with almost as many apps 
complicate smart-phone security. Although recent efforts have shed light on particular security issues, there remains little 
insight into broader security characteristics of smartphone application
start working on eclipse and develop an application and get it run on emulator. And 
application security by studying 1,100 popular free Android applications. We introduc
Android application source code directly from its installation image. Our analysis uncovered pervasive use/misuse of 
personal/phone identifiers, and deep penetration of advertising and analytics networks. However, we di
malware or exploitable vulnerabilities in the studied applications. We conclude by considering the implications of these 
preliminary findings and offer directions for future analysis.

 
I. Introduction 

Android  is  a  Linux based,  open source  mobile  operating 
system developed by Open Handset Alliance led by Google 
to develop apps for Android devices. To start with we use a 
set of tools that are included in the Android SDK. Once we 
have downloaded and installed the SDK, we can access 
these tools right from our Eclipse IDE, through the ADT 
plugin, or from the command line. Developing with Eclipse 
is the preferred method because it can directly invoke the 
tools that we need while developing applications..
The basic steps for developing applications are shown in 
Figure 1. The development steps encompass four 
development phases, which include: 
 
� Setup: During this phase we install and set up our 

development environment. We also create Android 
Virtual Devices (AVDs) and connect hardware 
devices, on which we can install our applications.

� Development: During this phase we set up and develop 
our Android project, which contains all of the source 
code and resource files for our application.

� Debugging and Testing: During this phase we build our 
project into a debug gable .apk package that we can 
install and run on the emulator. 

� Publishing: During this phase we configure and build 
our application for release and distribute our 
application to users. 

 
Application markets such as Apple’s App Store and
Google’s Android Market provide point and click access to 
hundreds of thousands of paid and free applications. 
The fluidity of the markets also presents enormous security 
challenges. Rapidly developed and deployed applications , 
coarse permission systems, privacy invading behaviours , 
malware, and limited security models  have led to 
exploitable phones and applications. Although users 
seemingly desire it, markets are not in a position to provide 
security in more than a superficial way. The lack of a 
common definition for security and the volume of 
applications ensures that some malicious, questionable, and 
vulnerable applications will find their way to market.
In this paper, we broadly characterize the security of 
applications in the Android Market. In this, we make two 
primary contributions: 
• We design and implement a Dalvik decompilier, ded. ded 

recovers an application’s Java source solely from its 
installation image by inferring lost types, performing 
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is now the most used mobile operating system in the world. The Google Play app store has been 
growing at breakneck speed and with almost as many apps as the Apple app store. The fluidity of application markets 

phone security. Although recent efforts have shed light on particular security issues, there remains little 
insight into broader security characteristics of smartphone applications.  This paper gives a complete knowledge of how to 
start working on eclipse and develop an application and get it run on emulator. And to better understand smart

studying 1,100 popular free Android applications. We introduce the ded decompiler, which recovers 
Android application source code directly from its installation image. Our analysis uncovered pervasive use/misuse of 
personal/phone identifiers, and deep penetration of advertising and analytics networks. However, we did not find evidence of 
malware or exploitable vulnerabilities in the studied applications. We conclude by considering the implications of these 
preliminary findings and offer directions for future analysis. 
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challenges. Rapidly developed and deployed applications , 

s, privacy invading behaviours , 
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We design and implement a Dalvik decompilier, ded. ded 
recovers an application’s Java source solely from its 
installation image by inferring lost types, performing 

DVM-to-JVM bytecode retargeting, and translating class 
and method structures.  

 
• We analyze 21 million LOC retrieved from the top 

1,100 free applications in the Android Market using 
automated tests and manual inspection. Where 
possible, we identify root causes and posit the severity 
of discovered vulnerabilities.  

Our popularity focused security analysis provides in
into the most frequently used applications 
This paper is an initial but not final word on Android 
application security. Thus, one should be circumspect about 
any interpretation of the following results as a definitive 
statement about how secure applications are today. Rather, 
we believe these results are indicative of the current state, 
but there remain many aspects of the applications that 
warrant deeper analysis.  

 
II. BACKGROUND 

Android: Android is an OS designed for smartphones. 
Depicted in Figure 1, Android provides a sandboxed 
application execution environment. A customized embedded 
Linux system interacts with the phone hardware and an off 
processor cellular radio. The Binder middlewar
application API runs on top of Linux. To simplify, an 
application’s only interface to the phone is through these 
APIs. Each application is executed within a Dalvik Virtual 
Machine (DVM) running under a unique UNIX uid. The 
phone comes preinstalled with a selection of 
applications, e.g., phone dialer, address book.
 

Applications interact with each other and the phone 
through different forms of IPC. Intents
interprocess messages that are directed to particular 
applications or systems services, or broadcast to 
applications subscribing to a particular intent type. 
Persistent content provider data stores are queried through 
SQL-like interfaces. Background services 
callback interfaces that applications use to trigger actions 
access data. Finally user interface activities
action signals from the system and other applications.
Binder acts as a mediation point for all IPC. Access to 
system resources (e.g., GPS receivers, text messaging, 
phone services, and the Internet), data (e.g., address books, 
email) and IPC is governed by permissions assigned at 
install time. The permissions requested by the application 
and the permissions required to access the application’s 
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interfaces/data are defined in its manifest file.
an application is allowed to access a resource or interface if 
the required permission allows it. 

 

Figure 1: The Android system architecture
 
Permission assignment—and indirectly the security policy 
for the phone—is largely delegated to the phone’s owner: 
the user is presented a screen listing the permissions an 
application requests at install time, which they can accept or 
reject. 
 
Dalvik Virtual Machine: Android applications are written 
in Java, but run in the DVM. The DVM and Java byte
runtime environments differ substantially: 
Application Structure. Java applications are composed
one or more .class files, one file per class. The JVM loads 
the bytecode for a Java class from the associated
 
.class file as it is referenced at run time. Conversely, a 
Dalvik application consists of a single .dex file containing 
all application classes. 

Figure 2 provides a conceptual view of the compilation 
process for DVM applications. After the Java compiler 
creates JVM bytecode, the Dalvik dx compi
the .class files, recompiles them to Dalvik bytecode, and 
writes the resulting application into a single .dex file. This 
process consists of the translation, reconstruction, and 
interpretation of three basic elements of the application: the 
constant pools, the class definitions, and the data segment. 
A constant pool describes, not surprisingly, the constants 
used by a class. This includes, among other items, 
references to other classes, method names, and numerical 
constants. The class definitions consist in the basic 
information such as access flags and class names. The data 
element contains the method code executed by the target 
VM, as well as other information related to methods (e.g., 
number of DVM registers used, local variable table, and 
operand stack sizes) and to class and instance variables.

 

Figure 2: Compilation process for DVM applications
 
Register architecture The DVM is register
existing JVMs are stack-based. Java bytecode can assign 
local variables to a local variable table before pushing them 
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element contains the method code executed by the target 
VM, as well as other information related to methods (e.g., 
number of DVM registers used, local variable table, and 

erand stack sizes) and to class and instance variables. 

 
: Compilation process for DVM applications 

The DVM is register-based, whereas 
based. Java bytecode can assign 

variable table before pushing them 

onto an operand stack for manipulation by opcodes, but it 
can also just work on the stack without explicitly storing 
variables in the table. Dalvik bytecode assigns local 
variables to any of the 216 available registers. T
opcodes directly manipulate registers, rather than accessing 
elements on a program stack. 
 
Instruction set  The Dalvik bytecode instruction set is
substantially different than that of Java. Dalvik has 218 
opcodes while Java has 200; however, the nature of the 
opcodes is very different.Dalvik instructions tend to be 
longer than Java instructions; they often include the source 
and destination registers. As a result, Dalvik applications 
require fewer instructions. In Dalvik bytecode, applications 
have on average 30% fewer instructions than in Java, but 
have a 35% larger code size (bytes). 
 
Constant pool structure. Java applications replicate 
elements in constant pools within the multiple .class files, 
e.g., referrer and referent method names. The dx compiler 
eliminates much of this replication. Dalvik uses a single 
pool that all classes simultaneously reference. 
 
Control flow Structure. Control flow ele
loops, switch statements and exception handlers are 
structured differently in Dalvik and Java bytecode. Java 
bytecode structure loosely mirrors the source code, whereas 
Dalvik bytecode does not. 
Ambiguous primitive types. Java bytecode variab
assignments distinguish between integer (int) and single 
precision floating point (float) constants and between long 
integer (long) and double precision floating point (double) 
constants. However, Dalvik assignments (int/float and 
long/double) use the same opcodes for integers and floats, 
e.g., the opcodes are untyped beyond specifying precision.
 
Null references. The Dalvik bytecode does not specify
null type, instead opting to use a zero value constant. Thus, 
constant zero values present in the Dalvi
ambiguous typing that must be recovered. 
 
Comparison of object references. The Java bytecode
typed opcodes for the comparison of object references (if 
acmpeq and if acmpne) and for null comparison of object 
references (ifnull and ifnonnull). The Dalvik bytecode uses 
a more simplistic integer comparison for these purposes: a 
comparison between two integers, and a comparison of an 
integer and zero  respectively. This requires the 
decompilation process to recover types for integer 
comparisons used in DVM bytecode. 
 
Storage of primitive types in arrays. The Dalvik byte code 
uses ambiguous opcodes to store and retrieve elements in 
arrays of primitive types (e.g., aget for int/float and aget 
wide for long/double) whereas the correspondi
bytecode is unambiguous. The array type must be recovered 
for correct translation. 
 

III. ECLIPSE 
Eclipse is an integrated development environment (IDE). It 
contains a base workspace and an extensible plugin system 
for customizing the environment. Written mostly in Java, 
Eclipse can be used to develop applications in Java.
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Figure 3. Steps for Application Development
 
The initial codebase originated from IBM. The Eclipse 
software development kit (SDK), which includes the Java 
development tools, is meant for Java developers. Users can 
extend its abilities by installing plugins written for the 
Eclipse Platform, such as development toolkits for other 
programming languages, and can write and contribute their 
own plugin modules. 
 
Released under the terms of the Eclipse Public License, 
Eclipse SDK is free and open source software (Table 1).
 
Creating an Android Project 
An Android project contains all the files that comprise the 
source code for  Android app. The Android SDK tools make 
it easy to start a new Android project with a set of default 
project directories and files. 

                      Table 1. Eclipse Releases 
 
Create a Project with Eclipse 
1. Click New  in the toolbar. 
2. In the window that appears, open 
the Android folder, select Android Application Project
and click Next. 
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In the window that appears, open 
Application Project, 

 

Figure 4.The New Android App Project wizard in Eclipse.
 
3. Fill in the form that appears: 

• Application Name is the app name that appears 
to users. For this project, use "My First App."

• Project Name is the name of your p
directory and the name visible in Eclipse. 

• Package Name is the package namespace for 
your app (following the same rules as packages in the Java 
programming language). Your package name must be 
unique across all packages installed on the Android syst
For this reason, it's generally best if you use a name that 
begins with the reverse domain name of your organization 
or publisher entity. For this project, you can use something 
like "com.example.myfirstapp." However, you cannot 
publish your app on Google Play using the "com.example" 
namespace. 

• Minimum Required SDK is the lowest version 
of Android that your app supports, indicated using the
level. To support as many devices as possible, you should 
set this to the lowest version available that allows your app 
to provide its core feature set. If any feature of your app is 
possible only on newer versions of Android and it's not 
critical to the app's core feature set, you can enable the 
feature only when running on the versions that support it. 
Leave this set to the default value for this project.

• Target SDK indicates the highest version of Android (also 
using the API level) with which you have tested with your 
application. 
As new versions of Android become available, you should 
test your app on the new version and update this value to 
match the latest API level in order to take advantage of new 
platform features. 

• Compile With is the platform version against which you 
will compile your app. By default, this is set to the latest 
version of Android available in your SDK. (It should be 
Android 4.1 or greater; if you don't have such a version 
available, you must install one using the
You can still build your app to support older versions, but 
setting the build target to the latest version allows you to 
enable new features and optimize your app for a great user 
experience on the latest devices. 

• Theme specifies the Android UI style to apply for your app.
You can leave this alone. 
Click Next. 
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4. On the next screen to configure the project, leave 
the default selections and click Next. 
5. The next screen can help you create a launcher 
icon for your app. 
You can customize an icon in several ways and the tool 
generates an icon for all screen densities. Before you 
publish your app, you should be sure your icon meets the 
specifications defined in the Iconography design guide.
Click Next. 
6. Now you can select an activity template from 
which to begin building your app. 
For this project, select BlankActivity and click
7. Leave all the details for the activity in their 
default state and click Finish. 
Running Your App 
How you run your app depends on two things: whether you 
have a real Android-powered device and whether you're 
using Eclipse. 
Before you run your app, you should be aware of a few 
directories and files in the Android project: 
AndroidManifest.xml 
The manifest file describes the fundamental characteristics 
of the app and defines each of its components
One of the most important elements your manifest should 
include is the <uses-sdk> element. This declares your app's 
compatibility with different Android versions using 
the android:minSdkVersion andandroid:targetSdkVersio
n attributes. For our first app, it should look like this:
 

<manifest 
xmlns:android="http://schemas.android.com/apk/res/androi
d" ... 
    <uses-sdk android:minSdkVersion
android:targetSdkVersion="17" 
    
</manifest> 

You should always set the android:targetSdkVersion
high as possible and test your app on the corresponding 
platform version. 
 
src/ 
Directory for your app's main source files. By default, it 
includes an Activity class that runs when your app is 
launched using the app icon. 
res/ 
Contains several sub-directories for app resources
just a few: 
drawable-hdpi/ 
Directory for drawable objects (such as bitmaps) that are 
designed for high-density (hdpi) screens. Other drawable 
directories contain assets designed for other screen 
densities. 
layout/ 
Directory for files that define your app's user interface.
values/ 
Directory for other various XML files that contain a 
collection of resources, such as string and color definitions.
Run on a Real Device 
If you have a real Android-powered device, here's how you 
can install and run your app: 
1. Plug in your device to your development machine 
with a USB cable. If you're developing on Windows, you 
might need to install the appropriate USB driver for your 
device. 
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On the next screen to configure the project, leave 

The next screen can help you create a launcher 

You can customize an icon in several ways and the tool 
generates an icon for all screen densities. Before you 
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powered device and whether you're 

Before you run your app, you should be aware of a few 
 

describes the fundamental characteristics 
the app and defines each of its components 

One of the most important elements your manifest should 
element. This declares your app's 

compatibility with different Android versions using 
android:targetSdkVersio

attributes. For our first app, it should look like this: 

"http://schemas.android.com/apk/res/androi
... > 

android:minSdkVersion="8" 
 /> 

 ... 

android:targetSdkVersion as 
high as possible and test your app on the corresponding 

Directory for your app's main source files. By default, it 
lass that runs when your app is 

app resources. Here are 

Directory for drawable objects (such as bitmaps) that are 
density (hdpi) screens. Other drawable 

directories contain assets designed for other screen 

files that define your app's user interface. 

Directory for other various XML files that contain a 
collection of resources, such as string and color definitions. 

powered device, here's how you 

Plug in your device to your development machine 
with a USB cable. If you're developing on Windows, you 
might need to install the appropriate USB driver for your 

2. Enable USB debugging on your device.
• On most devices running Andr

you can find the option under
Applications > Development. 

• On Android 4.0 and newer, it's in
Developer options. 
 
Note: On Android 4.2 and newer,
options is hidden by default. To make it available, 
go toSettings > About phone
number seven times. Return to the previous 
screen to findDeveloper options
 
 

To run the app from Eclipse: 
Open one of your project's files and click 
toolbar. 
1. In the Run as window that appears, 
select Android Application and click OK
Eclipse installs the app on your connected device and starts 
it. 
Run on the Emulator 
To run your app on the emulator you need to first create an 
Android Virtual Device (AVD). An AVD is a device 
configuration for the Android emulator that allows you to 
model different devices. 
 

Figure 5 The AVD Manager showing a few virtual devices.
 
To create an AVD: 
1. Launch the Android Virtual Device Manager:

In Eclipse, click Android Virtual Device Manager
the toolbar. 
2. In the Android Virtual Device Manager
click New. 
3. Fill in the details for the AVD. Give it a name, a 
platform target, an SD card size, and a skin (HVGA is 
default). 
4. Click Create AVD. 
5. Select the new AVD from the
Device Manager and click Start. 
6. After the emulator boots up, unlock the emulator 
screen. 
To run the app from Eclipse: 
1. Open one of your project's files and click
 from the toolbar. 
2. In the Run as window that appears, 
select Android Application and click OK
Eclipse installs the app on your AVD and starts it.
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Developer options. 

 Run  from the 

window that appears, 
OK. 

Eclipse installs the app on your connected device and starts 

To run your app on the emulator you need to first create an 
(AVD). An AVD is a device 

configuration for the Android emulator that allows you to 

 
The AVD Manager showing a few virtual devices. 

Launch the Android Virtual Device Manager: 

In Eclipse, click Android Virtual Device Manager from 

Android Virtual Device Manager panel, 

Fill in the details for the AVD. Give it a name, a 
card size, and a skin (HVGA is 

Select the new AVD from the Android Virtual 

After the emulator boots up, unlock the emulator 

and click Run 

window that appears, 
OK. 

Eclipse installs the app on your AVD and starts it. 
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IV. The ded decompiler
Building a decompiler from DEX to Java for the study 
proved to be surprisingly challenging. Unfortunately, prior 
to our work, there existed no functional tool for the Dalvik 
bytecode.  Because of the vast differences between JVM 
and DVM, simple modification of existing decompilers was 
not possible. 
This choice to decompile the Java source rather than operate 
on the DEX opcodes directly was grounded in two reasons. 
First, we wanted to leverage existing tools for code analysis. 
Second, we required access to source code to identify false 
positives resulting from automated code analysis, e.g., 
perform manual confirmation. 
ded extraction occurs in three stages: a
optimization, and  c) decompilation.  

 
Application Retargeting  
The initial stage of decompilation retargets the application 
.dex file to Java classes. Figure 4 overviews this process: (1) 
recovering typing information, (2) translating the constant 
pool, and (3) retargeting the bytecode. 
Type Inference: The first step in retargeting is to identify 
class and method constants and variables. However, t
Dalvik bytecode does not always provide enough 
information to determine the type of a variable or constant 
from its register declaration. There are two generalized 
cases where variable types are ambiguous: 1) constant and 
variable declaration only specifies the variable width (e.g., 
32 or 64 bits), but not whether it is a float, integer, or null 
reference; and 2) comparison operators do not distinguish 
between integer and object reference comparison (i.e., null 
reference checks). 
Type inference has been widely studied. The seminal 
Hindley-Milner algorithm provides the basis for type 
inference algorithms used by many languages such
Haskell and ML. These approaches determine unknown 
types by observing how variables are used in operations 
with known type operands. Similar techniques are used by 
languages with strong type inference, e.g., OCAML, as well 
weaker inference, e.g., Perl 
ded adopts the accepted approach: it infers register types by 
observing how they are used in subsequent operations with 
known type operands. Dalvik registers loosely correspond to 
Java variables. Because Dalvik bytecode reuses registers 
whose variables are no longer in scope, we must evaluate 
the register type within its context of the method control 
flow, i.e., inference must be path sensitive 
 

Figure 3: Dalvik bytecode retargeting
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bytecode.  Because of the vast differences between JVM 
and DVM, simple modification of existing decompilers was 

ile the Java source rather than operate 
on the DEX opcodes directly was grounded in two reasons. 
First, we wanted to leverage existing tools for code analysis. 
Second, we required access to source code to identify false 

ode analysis, e.g., 

a) retargeting, b) 

The initial stage of decompilation retargets the application 
ses. Figure 4 overviews this process: (1) 

recovering typing information, (2) translating the constant 

Type Inference: The first step in retargeting is to identify 
class and method constants and variables. However, the 
Dalvik bytecode does not always provide enough 
information to determine the type of a variable or constant 
from its register declaration. There are two generalized 
cases where variable types are ambiguous: 1) constant and 

fies the variable width (e.g., 
32 or 64 bits), but not whether it is a float, integer, or null 
reference; and 2) comparison operators do not distinguish 
between integer and object reference comparison (i.e., null 

widely studied. The seminal 
Milner algorithm provides the basis for type 

inference algorithms used by many languages such as 
Haskell and ML. These approaches determine unknown 
types by observing how variables are used in operations 

operands. Similar techniques are used by 
languages with strong type inference, e.g., OCAML, as well 

ded adopts the accepted approach: it infers register types by 
observing how they are used in subsequent operations with 
known type operands. Dalvik registers loosely correspond to 
Java variables. Because Dalvik bytecode reuses registers 

no longer in scope, we must evaluate 
the register type within its context of the method control 

 
Figure 3: Dalvik bytecode retargeting 

There are three ways ded infers a register’s type. First, any 
comparison of a variable or constant with a known type 
exposes the type. Comparison of dissimilar types requires 
type coercion in Java, which is propagated to the Dalvik 
bytecode. Hence legal Dalvik comparisons always involve 
registers of the same type. Second, instructions such as 
addint only operate on specific types, manifestly exposing 
typing information. Third, instructions that pass registers to 
methods or use a return value expose the type
method signature. 
The ded type inference algorithm proceeds as follows. After 
reconstructing the control flow graph, ded identifies any 
ambiguous register declaration. For each such register, ded 
walks the instructions in the control flow graph s
from its declaration. Each branch of the control flow 
encountered is pushed onto an inference stack, e.g., ded 
performs a depth-first search of the control flow graph 
looking for type exposing instructions. If a type exposing 
instruction is encountered, the variable is labeled and the 
process is complete for that variable.  

There are three events that cause a branch search to 
terminate: a) when the register is reassigned to another 
variable (e.g., a new declaration is encountered), b) when a 
return function is encountered, and c) when an exception is 
thrown. After a branch is abandoned, the next branch is 
popped off the stack and the search continues. Lastly, type 
information is forward propagated, modulo register 
reassignment, through the control flow graph from each 
register declaration to all subsequent ambiguous uses. This 
algorithm resolves all ambiguous primitive types, except for 
one isolated case when all paths leading to a type 
ambiguous instruction originate with ambiguous constant 
instructions (e.g., all paths leading to an integer comparison 
originate with registers assigned a constant zero). In this 
case, the type does not impact decompila-tion, and a default 
type (e.g., integer) can be assigned. 
Constant Pool Conversion: The .dex and .cl
pools differ in that: a) Dalvik maintains a single constant 
pool for the application and Java maintains one for each 
class, and b) Dalvik bytecode places primitive type 
constants directly in the bytecode, whereas Java bytecode 
uses the constant pool for most references. We convert 
constant pool information in two steps. 
The first step is to identify which constants are needed for a 
.class file. Constants include references to classes, methods, 
and instance variables. ded traverses the b
method in a class, noting such references. ded also identifies 
all constant primitives. 
Once ded identifies the constants required by a class, it adds 
them to the target .class file. For primitive type constants, 
new entries are created. For class, method, and instance 
variable references, the created Java constant pool entries 
are based on the Dalvik constant pool entries. The constant 
pool formats differ in complexity. Specifically, Dalvik 
constant pool entries use significantly more ref
reduce memory overhead. 
Method Code Retargeting: The final stage of the retargeting 
process is the translation of the method code. First, we 
preprocess the bytecode to reorganize structures that cannot 
be directly retargeted. Second, we linearl
DVM bytecode and translate to the JVM. 
The preprocessing phase addresses multidimensional arrays. 
Both Dalvik and Java use blocks of bytecode instructions to 
create multidimensional arrays; however, the instructions 
have different semantics and layout. ded reorders and 
annotates the bytecode with array size and type information 
for translation. 
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reconstructing the control flow graph, ded identifies any 
ambiguous register declaration. For each such register, ded 
walks the instructions in the control flow graph starting 
from its declaration. Each branch of the control flow 
encountered is pushed onto an inference stack, e.g., ded 

first search of the control flow graph 
looking for type exposing instructions. If a type exposing 

ered, the variable is labeled and the 

There are three events that cause a branch search to 
terminate: a) when the register is reassigned to another 
variable (e.g., a new declaration is encountered), b) when a 

function is encountered, and c) when an exception is 
thrown. After a branch is abandoned, the next branch is 
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pool formats differ in complexity. Specifically, Dalvik 
constant pool entries use significantly more references to 

Method Code Retargeting: The final stage of the retargeting 
process is the translation of the method code. First, we 
preprocess the bytecode to reorganize structures that cannot 
be directly retargeted. Second, we linearly traverse the 

 
he preprocessing phase addresses multidimensional arrays. 

Both Dalvik and Java use blocks of bytecode instructions to 
create multidimensional arrays; however, the instructions 

and layout. ded reorders and 
annotates the bytecode with array size and type information 
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The bytecode translation linearly processes each Dalvik 
instruction. First, ded maps each referenced  register to a 
Java local variable table index. Second, ded performs an 
instruction translation for each encountered Dalvik 
instruction. As Dalvik bytecode is more compact and takes 
more arguments, one Dalvik instruction frequently expands 
to multiple Java instructions. Third, ded patches the relative 
offsets used for branches based on preprocessing 
annotations. Finally, ded defines exception tables that 
describe try/catch/finally blocks. The resulting translated 
code is combined with the constant pool to creates a legal 
Java .class file. 
 
Optimization and Decompilation  
At this stage, the retargeted .class files can be decompiled 
using existing tools, e.g., Fernflower  or Soot . However, 
ded’s bytecode translation process yields unoptimized Java 
code. For example, Java tools often optimize out 
unnecessary assignments to the local variable table, e.g., 
unneeded return values. Without optimization, decompiled 
code is complex and frustrates analysis. Furthermore, 
artifacts of the retargeting pro-cess can lead to 
decompilation errors in some decompilers. Th
bytecode optimization is easily demonstrated by considering 
decompiled loops. Most decompilers convert for loops into 
infinite loops with break instructions. While the resulting 
source code is functionally equivalent to the original, it is 
significantly more difficult to understand and analyze, 
especially for nested loops. Thus, we use Soot as a post
retargeting optimizer. While Soot is centrally an 
optimization tool with the ability to recover source code in 
most cases, it does not process certain legal program idioms 
(bytecode structures) generated by ded. In particular, we 
encountered two central problems involving, 1) interactions 
between synchronized blocks and exception handling, and 
2) complex control flows caused by break statements. While
the Java bytecode generated by ded is legal, the source code 
failure rate reported in the following section is almost 
entirely due to Soot’s inability to extract source code from 
these two cases. We will consider other decompilers in 
future work, e.g., Jad , JD , and Fernflower .
 
 
V. Source Code Recovery Validation
We have performed extensive validation testing of ded . The 
included tests recovered the source code for small, medium 
and large open source applications and found no errors in 
recovery. In most cases the recovered code was virtually 
indistinguishable from the original source (modulo 
comments and method local variable names, which are not 
included in the bytecode). 
Retargeting Failures. 0.59% of classes were not retar
geted. These errors fall into three classes: 
references which prevent optimization by Soot, 
violations caused by Android’s dex compiler and 
tremely rare cases in which ded produces illegal byte
Recent efforts have focused on improving opti
well as redesigning ded with a formally de
inference apparatus. Parallel work on improv
been able to reduce these errors by a third, and we expect 
further improvements in the near future. 
Decompilation Failures. 5% of the classes were suc
cessfully retargeted, but Soot failed to recover the 
sourcecode. Here we are limited by the state of the art in de
compilation. In order to understand the impact of de
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instruction translation for each encountered Dalvik 
instruction. As Dalvik bytecode is more compact and takes 
more arguments, one Dalvik instruction frequently expands 
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offsets used for branches based on preprocessing 
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bytecode optimization is easily demonstrated by considering 
decompiled loops. Most decompilers convert for loops into 
infinite loops with break instructions. While the resulting 
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especially for nested loops. Thus, we use Soot as a post-
retargeting optimizer. While Soot is centrally an 
optimization tool with the ability to recover source code in 
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(bytecode structures) generated by ded. In particular, we 
encountered two central problems involving, 1) interactions 
between synchronized blocks and exception handling, and 
2) complex control flows caused by break statements. While 
the Java bytecode generated by ded is legal, the source code 
failure rate reported in the following section is almost 
entirely due to Soot’s inability to extract source code from 
these two cases. We will consider other decompilers in 

d , JD , and Fernflower . 

Source Code Recovery Validation 
We have performed extensive validation testing of ded . The 
included tests recovered the source code for small, medium 
and large open source applications and found no errors in 

cases the recovered code was virtually 
indistinguishable from the original source (modulo 
comments and method local variable names, which are not 

. 0.59% of classes were not retar-
geted. These errors fall into three classes: a) unresolved 
references which prevent optimization by Soot, b) type 
violations caused by Android’s dex compiler and c) ex-
tremely rare cases in which ded produces illegal byte-code. 
Recent efforts have focused on improving opti-mization, as 
well as redesigning ded with a formally de-fined type 
inference apparatus. Parallel work on improv-ing ded has 
been able to reduce these errors by a third, and we expect 

. 5% of the classes were suc-
cessfully retargeted, but Soot failed to recover the 
sourcecode. Here we are limited by the state of the art in de-
compilation. In order to understand the impact of de-

compiling ded retargeted classes verses ordinary Java
files, we performed a parallel study to evaluate Soot on Java 
applications generated with traditional Java compilers. Of 
31,553 classes from a variety of packages, Soot was able to 
decompile 94.59%, indicating we cannot do better while 
using Soot for decompilation. 
 

VI. Evaluating Android Security
 
Our Android application study consisted of a broad range of 
tests focused on three kinds of analysis: a
uncovered in previous studies and malware advisories, 
searching for general coding security failures, and 
exploring misuse/security failures in the use of Android 
framework. The following discusses the pro
identifying and encoding the tests. 
 

i. Analysis Specification  
We used four approaches to evaluate recovered source code: 
control flow analysis, data flow analysis
analysis, and semantic analysis. Unless otherwise
all tests used the Fortify SCA static anal
provides these four types of analysis. The following 
discusses the general application of these approaches. The 
details for our analysis specifications can be found in the 
technical report  
 
Control flow analysis. Control flow 
constraints on the sequences of actions executed by an input 
program P, classifying some of them as errors. Es
control flow rule is an automaton A whose input words are 
sequences of actions of P—i.e., the rule monitors 
of P. An erroneous action sequence is one that drives 
a predefined error state. To statically detect violations 
specified by A, the program analysis traces each control 
flow path in the tool’s model of P
“executing” A on the actions executed along this path. Since 
not all control flow paths in the model are feasible in 
concrete executions of P, false positives are possible. False 
negatives are also possible in principle, though uncommon 
in practice. Figure 4 shows an example
sending intents. Here, the error state is reached if the intent 
contains data and is sent unprotected without specifying the 
target component, resulting in a potential unintended 
information leakage. 
Data flow analysis. Data flow analysis pe
declarative specification of problematic data flows in the 
input program. For example, an Android phone contains 
several pieces of private information that should never leave 
the phone: the user’s phone number, IMEI (device ID), 
IMSI (subscriber ID), and ICC-ID (SIM card serial 
number). In our study, we wanted to check that this 
information is not leaked to the network. While this 
property can in principle be coded using automata, data flow 
specification allows for a much easier encoding. The 
specification declaratively labels program statements 
matching certain syntactic patterns as data flow sources
sinks. Data flows between the sources and sinks are 
violations. 
Structural analysis. Structural analysis allows for
declarative pattern matching on the abstract syntax of the 
input source code. Structural analysis specifications are not 
concerned with program executions or data flow, therefore, 
analysis is local and straightforward. For example, in our 
study, we wanted to specify a bug pattern whe
application mines the device ID of the phone on which it 
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application mines the device ID of the phone on which it 



VVoolluummee--88,,  NNuummbbeerr--22  JJaann--JJuunn

�

�
runs. This pattern was defined using a structural rule that 
stated that the input program called a method 
whose enclosing class was 
android.telephony.TelephonyManager. 
Semantic analysis. Semantic analysis allows the 
specification of a limited set of constraints on the values 
used by the input program. For example, a property of 
interest in our study was that an Android application does 
not send SMS messages to hard-coded targets. To express 
this property, we defined a pattern matching calls to 
Android messaging methods such as sendTextMessage()
Seman-tic specifications permit us to directly specify that 
the first parameter in these calls (the phone number) is not a 
constant. The analyzer detects violations to this property 
using constant propagation techniques well known in 
program analysis literature. 
 

ii. Analysis Overview  
Our analysis covers both dangerous functionality and 
vulnerabilities. Selecting the properties for 
significant challenge. For brevity, we only provide an 
overview of the specifications. The technical report provides 
a detailed discussion of specifications. 
 
Misuse of Phone Identifiers Previous studies  identified 
phone identifiers leaking to remote network servers. We 
seek to identify not only the existence of data flows, but 
understand why they occur. 
 
Exposure of Physical Location Previous studies  
location exposure to advertisement servers. Many 
applications provide valuable location-aware utility, which 
may be desired by the user. By manually inspecting code, 
we seek to identify the portion of the application responsible 
for the exposure. 
 
Abuse of Telephony Services  Smart-phone malware has 
sent SMS messages to premium-rate numbers. We study the 
use of hard-coded phone numbers to identify SMS and 
voice call abuse. 
Eavesdropping on Audio/Video Audio
eavesdropping is a commonly discussed smart
We examine cases where applications record audio or video 
without control flows to UI code. 
Botnet Characteristics (Sockets) PC 
historically use non HTTP ports and protocols for command 
and control. Most applications use HTTP client wrappers 
for network connections, therefore, we examine 
for suspicious behavior. 
 
Harvesting Installed Applications The 
applications is a valuable demographic for marketing. We 
survey the use of APIs to retrieve this list to identify 
harvesting of installed applications. 
Use of Advertisement Libraries Previous studies identified 
information exposure to ad and analytics 
survey inclusion of ad and analytics libraries and the 
information they access. 
Dangerous Developer Libraries  During our manual source 
code inspection, we observed dangerous functionality 
replicated between applications. We re
replication and the implications. 
Android-specific Vulnerabilities We search for non
coding practices, including: writing sensitive information to 
logs, unprotected broadcasts of information, IPC null 
checks, injection at-tacks on intent actions, and delegation.
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broadcasts of information, IPC null 
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General Java Application Vulnerabilities
general Java application vulnerabilities, including mis
passwords, misuse of cryptography, and tr
vulnerabilities. Due to space limitations, individual results 
for the general vulnerability analysis are reported in the 
technical report. 
 

VII.  Application Analysis Results
In this section, we document the program analysis results 
and manual inspection of identified violations.
 

Table 2: Access of Phone Identifier APIs
 

Identifier # Calls # Apps # w/ Permission
Phone Number 167 129 105
IMEI 378 216 184
IMSI 38 30 27
ICC-ID 33 21 21
Total Unique - 246 210
� Defined as having the READ_PHONE_STATE 
permission. 
† Only 1 app did not also have the INTERNET 
permission. 

 
i. Information Misuse  

In this section, we explore how sensitive information is 
being leaked  through information sinks includ
OutputStream objects retrieved from 
HTTP GET and POST parameters in
connections, and the string used for URL
work may also include SMS as a sink. 
 

ii. Phone Identifiers 
We studied four phone identifiers: phone number, IMEI 
(device identifier), IMSI (subscriber identifier), and ICC
(SIM card serial number). We performed two types of 
analysis: a) we scanned for APIs that access identifiers, and 
b) we used data flow analysis to identify code capa
sending the identifiers to the network. 
Table 2 summarizes APIs calls that receive phone 
identifiers. In total, 246 applications (22.4%) included code 
to obtain a phone identifier; however, only 210 of these 
applications have the READ_PHONE_STATE permission 
required to obtain access. Section 5.3 discusses code that 
probes for permissions. We observe from Table 2 that 
applications most frequently access the IMEI (216 
applications, 19.6%). The phone number is used second 
most (129 applications, 11.7%). Finally, the IMSI and ICC
ID are very rarely used (less than 3%). 
Table 3 indicates the data flows that exfiltrate phone 
identifiers. The 33 applications have the INTERNET 
permission, but 1 application does not have the READ_ 
PHONE_STATE permission. We found data flows for all 
four identifier types: 25 applications have IMEI data flows; 
10 applications have phone number data flows; 5 
applications have IMSI data flows; and 4 applications have 
ICC-ID data flows. 
To gain a better understanding of how phone identi
used, we manually inspected all 33 identified applications, 
as well as several additional applications that contain calls 
to identifier APIs. We confirmed exfiltration for all but one 
application. In this case, code complexity hindered manual 
confirmation; however we identified a different data flow 
not found by program analysis. The analysis informs the 
following findings. 
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Defined as having the READ_PHONE_STATE 

Only 1 app did not also have the INTERNET 

In this section, we explore how sensitive information is 
hrough information sinks including 

objects retrieved from URLConnections, 
HTTP GET and POST parameters in HttpClient 

URL objects. Future 

We studied four phone identifiers: phone number, IMEI 
(device identifier), IMSI (subscriber identifier), and ICC-ID 
(SIM card serial number). We performed two types of 

) we scanned for APIs that access identifiers, and 
sis to identify code capable of 

Table 2 summarizes APIs calls that receive phone 
identifiers. In total, 246 applications (22.4%) included code 
to obtain a phone identifier; however, only 210 of these 

ve the READ_PHONE_STATE permission 
required to obtain access. Section 5.3 discusses code that 
probes for permissions. We observe from Table 2 that 
applications most frequently access the IMEI (216 
applications, 19.6%). The phone number is used second 

(129 applications, 11.7%). Finally, the IMSI and ICC-

Table 3 indicates the data flows that exfiltrate phone 
identifiers. The 33 applications have the INTERNET 
permission, but 1 application does not have the READ_ 

ONE_STATE permission. We found data flows for all 
four identifier types: 25 applications have IMEI data flows; 
10 applications have phone number data flows; 5 
applications have IMSI data flows; and 4 applications have 

derstanding of how phone identifiers are 
used, we manually inspected all 33 identified applications, 
as well as several additional applications that contain calls 
to identifier APIs. We confirmed exfiltration for all but one 

code complexity hindered manual 
confirmation; however we identified a different data flow 
not found by program analysis. The analysis informs the 
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Finding 1 - Phone identifiers are frequently leaked
plaintext requests. Most sinks are HTTP
parameters. HTTP parameter names 
 

Table 3: Detected Data Flows to Network Sinks
 
 Phone Identifiers 

Sink # Flows 
 

# Apps  
OutputStream 10  9 0
HttpClient Param 24  9 12
URL Object 59  19 49
Total Unique -  33 -

     
 
for the IMEI include: “uid,” “user-id,” “imei,” “devi
ceId,” “deviceSerialNumber,” “devicePrint,” “X
and “uniquely code”; phone number names include 
“phone” and “mdn”; and IMSI names include “did”
“imsi.” In one case we identified an HTTP parameter for 
the ICC-ID, but the developer mislabeled it “imei.”
 
Finding 2 - Phone identifiers are used as device fin
gerprints. Several data flows directed us towards code
that reports not only phone identifiers, but also other 
phone properties to a remote server. For example, a wall
paper application (com.eoeandroid.eWallpapers.cartoon) 
contains a class named SyncDeviceInfosService
lects the IMEI and attributes such as the OS ver
device hardware. The method sendDevice
this information to a server. In an-other application 
(com.avantar.wny), the method 
eStats.toUrlFormatedString() creates a URL parameter
string containing the IMEI, device model, platform, and 
application name. While the intent is not clear, such fin
gerprinting indicates that phone identifiers are used for 
more than a unique identifier. 
 
Finding 3 - Phone identifiers, specifically the IMEI,
are  used  to  track  individual  users. 
applications  contain  code that binds  the
a  unique  identifier  to  network  requests. 
ample,  some  applications (e.g. 
com.nextmobileweb.craigsphone) appear to bundle the 
IMEI in search queries; in a travel application 
(com.visualit.tubeLondonCity), the method 
Info() includes the IMEI in a URL; and a “keyring” appli
cation (com.froogloid.kring.google.zxing.clie
appends the IMEI to a variable named 
LookupCmd. We also found functionality that in
the IMEI when checking for updates (e.g., 
com.webascender.callerid, which also includes the phone 
number) and retrieving advertisements (see Fin
Furthermore, we found two applications (com.taobo.tao 
and raker.duobao.store) with network ac
methods that include the IMEI for all con-nections. These 
behaviors indicate that the IMEI is used as a form of 
“tracking cookie”. 
 
Finding 4 - The IMEI is tied to personally identifi
information (PII). The common belief that the
phone owner mapping is not visible outside the cellular 
network is no longer true. In several cases, we found code 
that bound the IMEI to account information and other PII. 
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Phone identifiers are frequently leaked through 
s are HTTP GET or POST 

Table 3: Detected Data Flows to Network Sinks 

Location Info.  

# Flows 
 

# Apps 
 

  
0  0  
12  4  
49  10  
-  13  
    

id,” “imei,” “devi-
ceId,” “deviceSerialNumber,” “devicePrint,” “X-DSN,” 
and “uniquely code”; phone number names include 
“phone” and “mdn”; and IMSI names include “did” and 
“imsi.” In one case we identified an HTTP parameter for 

ID, but the developer mislabeled it “imei.” 

Phone identifiers are used as device fin-
Several data flows directed us towards code 

that reports not only phone identifiers, but also other 
phone properties to a remote server. For example, a wall-
paper application (com.eoeandroid.eWallpapers.cartoon) 

SyncDeviceInfosService that col-
h as the OS ver-sion and 
sendDevice-Infos() sends 

other application 
(com.avantar.wny), the method Phon-

creates a URL parameter 
odel, platform, and 

application name. While the intent is not clear, such fin-
gerprinting indicates that phone identifiers are used for 

Phone identifiers, specifically the IMEI, 
Several 

binds  the IMEI as 
For ex- 

com.Qunar and 
com.nextmobileweb.craigsphone) appear to bundle the 
IMEI in search queries; in a travel application 
(com.visualit.tubeLondonCity), the method refreshLive-

includes the IMEI in a URL; and a “keyring” appli-
cation (com.froogloid.kring.google.zxing.client.android) 
appends the IMEI to a variable named retailer-

. We also found functionality that in-cludes 
the IMEI when checking for updates (e.g., 
com.webascender.callerid, which also includes the phone 
number) and retrieving advertisements (see Find-ing 6). 
Furthermore, we found two applications (com.taobo.tao 
and raker.duobao.store) with network ac-cess wrapper 

nections. These 
behaviors indicate that the IMEI is used as a form of 

The IMEI is tied to personally identifi-able 
The common belief that the IMEI to 

phone owner mapping is not visible outside the cellular 
network is no longer true. In several cases, we found code 

information and other PII. 

For example, applications (e.g. com.slacker.radio and 
com.statefarm.pocketagent) include the IMEI in account 
registration and login re-quests. In another application 
(com.amazon.mp3), the method linkDevice()
IMEI. Code inspec-tion indicated that this method is 
called when the user chooses to “Enter a claim code” to 
redeem gift cards. We also found IMEI use in code for 
sending comments and reporting problems (e.g., 
com.morbe.guarder and com.fm207.discount). Finally, 
we found one application (com.andoop.highscore) that 
appears to bundle the IMEI when submitting high scores 
for games. Thus, it seems clear that databases containing 
mappings between physical users and IMEIs are being 
created. 
 
Finding 5 - Not all phone identifier use leads to exfiltration. 
Several applications that access phone identifiers
exfiltrate the values. For example, one application 
(com.amazon.kindle) creates a device fingerprint for a 
verification check. The fingerprint is kept in “secure 
storage” and does not appear to leave the phone. An
application (com.match.android.matchmobile) as
phone number to a text field used for account registration. 
While the value is sent to the network during registration, 
the user can easily change or remove it. 
 
Finding 6 - Phone identifiers are sent to advertisement and 
analytics servers. Many applications have
analytics functionality. For example, in one application 
(com.accuweather.android), the class ACCU
is an IMEI data flow sink. Another
(com.amazon.mp3) defines Android service component 
AndroidMetricsManager, which is an IMEI data flow sink. 
Phone identifier data flows also occur in ad libraries. For 
example, we found a phone num- 
 
ber data flow sink in the com/wooboo/adlib_android library 
used by several applications (e.g., cn.ecook, 
com.superdroid.sqd, and com.superdroid.ewc). Section 5.3 
discusses ad libraries in more detail. 
 
Location Information 
Location information is accessed in two ways: (1) calling 
getLastKnownLocation(), and (2) defining callbacks in
LocationListener object passed to 
requestLocationUpdates(). Due to code recovery failures, 
not all Location-Listener objects have corresponding
requestLocationUpdates() calls. We scanned for all three 
constructs. 
 

Table 4 summarizes the access of location information. In 
total, 505 applications (45.9%) attempt to access location, 
only 304 (27.6%) have the permission to do so. This 
difference is likely due to libraries tha
permissions, as discussed in Section 5.3. The separation 
between LocationListener and requestLocationUpdates() 
primarily due to the AdMob library, which de
former but has no calls to the latter. 
 
 To overcome missing code challenges, the data flow 
source was defined as the getLatitude() and 
methods of the Location object retrieved from
APIs. We manually inspected the 13 appli
location data flows. Many data flows appeared to reflect 
legitimate uses of location for weather, classifieds, points 
of interest, and social networking services. Inspection of 
the remaining applications informs the following findings:
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For example, applications (e.g. com.slacker.radio and 
com.statefarm.pocketagent) include the IMEI in account 

quests. In another application 
linkDevice() includes the 

tion indicated that this method is 
called when the user chooses to “Enter a claim code” to 
redeem gift cards. We also found IMEI use in code for 
sending comments and reporting problems (e.g., 

discount). Finally, 
we found one application (com.andoop.highscore) that 
appears to bundle the IMEI when submitting high scores 
for games. Thus, it seems clear that databases containing 
mappings between physical users and IMEIs are being 

Not all phone identifier use leads to exfiltration. 
Several applications that access phone identifiers did not 
exfiltrate the values. For example, one application 
(com.amazon.kindle) creates a device fingerprint for a 

t is kept in “secure 
storage” and does not appear to leave the phone. An-other 
application (com.match.android.matchmobile) as signs the 
phone number to a text field used for account registration. 
While the value is sent to the network during registration, 

Phone identifiers are sent to advertisement and 
Many applications have custom ad and 

analytics functionality. For example, in one application 
ACCUWX AdRequest 

is an IMEI data flow sink. Another application 
(com.amazon.mp3) defines Android service component 

, which is an IMEI data flow sink. 
Phone identifier data flows also occur in ad libraries. For 

ber data flow sink in the com/wooboo/adlib_android library 
used by several applications (e.g., cn.ecook, 
com.superdroid.sqd, and com.superdroid.ewc). Section 5.3 

ssed in two ways: (1) calling 
, and (2) defining callbacks in a 

object passed to 
. Due to code recovery failures, 

objects have corresponding 
calls. We scanned for all three 

Table 4 summarizes the access of location information. In 
total, 505 applications (45.9%) attempt to access location, 
only 304 (27.6%) have the permission to do so. This 
difference is likely due to libraries that probe for 
permissions, as discussed in Section 5.3. The separation 

requestLocationUpdates() is 
primarily due to the AdMob library, which de-fined the 

s, the data flow 
and getLongitude() 

object retrieved from the location 
manually inspected the 13 applications with 

location data flows. Many data flows appeared to reflect 
uses of location for weather, classifieds, points 

vices. Inspection of 
the remaining applications informs the following findings: 
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Finding 7 - The granularity of location reporting may
always be obvious to the user. In one application 
(com.andoop.highscore) both the city/country 
geographic coordinates are sent along with high scores. 
Users may be aware of regional geographic information 
associated with scores, but it was unclear 
aware that precise coordinates are also used.
Finding 8 - Location information is sent to advertise
servers. Several location data flows appeared to
in network connections used to retrieve ads. For example, 
two applications (com.avantar.wny and com.avantar.yp) 
appended the location to the variable webAdURLString
Motivated by, we inspected the AdMob library to 
determine why no data flow was found and determined 
that source code recovery failures led to the false 
negatives. Section 5.3 expands on ad libraries.
 

Phone Misuse  
This section explores misuse of the smartphone inter
including telephony services, background record
audio and video, sockets, and accessing the list of installed 
applications. 
 

VIII. Study Limitations 
Our study section was limited in three ways: 
applications were selected with a bias towards popularity; 
the program analysis tool cannot compute data and control 
flows for IPC between components; and 
recovery failures interrupt data and control flows. Missing 
data and control flows may lead to false negatives. In 
addition to the recovery failures, the program analysis tool 
could not parse 8,042 classes, reducing coverage to 91.34% 
of the classes. 
Additionally, a portion of the recovered source code was 
obfuscated before distribution. Code obfuscation 
significantly impedes manual inspection. It likely exists to 
protect intellectual property; Google suggests obfuscation 
using ProGuard (proguard.sf.net) for applications using i
licensing service. ProGuard protects against readability and 
does not obfuscate control flow. Therefore it has limited 
impact on program analysis. 
Many forms of obfuscated code are easily recognizable: 
e.g., class, method, and field names are converted
letters, producing single letter Java filenames (e.g., a.java). 
For a rough estimate on the use of obfuscation, we searched 
applications containing a.java. In total, 396 of the 1,100 
applications contain this file. As discussed in Section 5.3, 
several advertisement and analytics libraries are obfuscated. 
To obtain a closer estimate of the number of applications 
whose main code is obfuscated, we searched for a.java 
within a file path equivalent to the package name (e.g., 
com/foo/appname for com.foo.appname). Only 20 
applications (1.8%) have this obfuscation property, which is 
expected for free applications (as opposed to paid 
applications). However, we stress that the a.java heuristic is 
not intended to be a firm characterization of the percentage 
of obfuscated code, but rather a means of acquiring insight.
 

IX.  What This All Means
Identifying a singular take away from a broad study such as 
this is non obvious. We come away from the study with two 
central thoughts; one having to do with the study appa
and the other regarding the applications. ded and the 
program analysis specifications are enabling technologies 
that open a new door for application certification. We found 
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The granularity of location reporting may not 
In one application 

(com.andoop.highscore) both the city/country and 
geographic coordinates are sent along with high scores. 
Users may be aware of regional geographic information 
associated with scores, but it was unclear if users are 
aware that precise coordinates are also used. 

nformation is sent to advertisement 
Several location data flows appeared to terminate 

in network connections used to retrieve ads. For example, 
.avantar.wny and com.avantar.yp) 

webAdURLString. 
AdMob library to 

determine why no data flow was found and determined 
that source code recovery failures led to the false 

n 5.3 expands on ad libraries. 

misuse of the smartphone interfaces, 
ony services, background recording of 

audio and video, sockets, and accessing the list of installed 

Our study section was limited in three ways: a) the studied 
applications were selected with a bias towards popularity; b) 
the program analysis tool cannot compute data and control 
flows for IPC between components; and c) source code 

rupt data and control flows. Missing 
data and control flows may lead to false negatives. In 
addition to the recovery failures, the program analysis tool 
could not parse 8,042 classes, reducing coverage to 91.34% 

the recovered source code was 
obfuscated before distribution. Code obfuscation 
significantly impedes manual inspection. It likely exists to 
protect intellectual property; Google suggests obfuscation 
using ProGuard (proguard.sf.net) for applications using its 
licensing service. ProGuard protects against readability and 
does not obfuscate control flow. Therefore it has limited 

Many forms of obfuscated code are easily recognizable: 
e.g., class, method, and field names are converted to single 
letters, producing single letter Java filenames (e.g., a.java). 
For a rough estimate on the use of obfuscation, we searched 
applications containing a.java. In total, 396 of the 1,100 
applications contain this file. As discussed in Section 5.3, 
everal advertisement and analytics libraries are obfuscated. 

To obtain a closer estimate of the number of applications 
whose main code is obfuscated, we searched for a.java 
within a file path equivalent to the package name (e.g., 

o.appname). Only 20 
applications (1.8%) have this obfuscation property, which is 
expected for free applications (as opposed to paid 
applications). However, we stress that the a.java heuristic is 
not intended to be a firm characterization of the percentage 
of obfuscated code, but rather a means of acquiring insight. 

What This All Means 
away from a broad study such as 

obvious. We come away from the study with two 
central thoughts; one having to do with the study apparatus, 
and the other regarding the applications. ded and the 

abling technologies 
that open a new door for application certification. We found 

the approach rather effective despite existing limitations. In 
addition to further studies of this kind, we see the potential 
to integrate these tools into an application certification 
process. We leave such discussions for future work, noting 
that such integration is challenging for both logistical and 
technical reasons .On a technical level, we found the 
security characteristics of the top 1,100 free popular 
applications to be consistent with smaller studies. Our 
findings indicate an overwhelming concern for misuse of
privacy sensitive information such as phone identifiers and 
location information. One might speculate this occur due to 
the difficulty in assigning malicious intent.
Arguably more important than identifying the exis
information misuse, our manual source code inspection 
sheds more light on how information is mis
phone identifiers, e.g., phone number, IMEI, IMSI, and 
ICC-ID, were used for everything from “cookie
tracking to account numbers. Our findings also support the 
existence of databases external to cellular providers that link 
identifiers such as the IMEI to personally identifiable 
information. 
Our analysis also identified significant penetration of ad and 
analytic libraries, occurring in 51% of the studied 
applications. While this might not be surprising for free 
applications, the number of ad and analytics libraries 
included per application was unexpected. One application 
included as many as eight different libraries. It is unclear 
why an application needs more than one advertisement and 
one analytics library. 
From a vulnerability perspective, we found that many 
developers fail to take necessary security precautions. For 
example, sensitive information is frequently written to 
Android’s centralized logs, as well as occasionally 
broadcast to unprotected IPC. We also identified the 
potential for IPC injection attacks; however, no cases were 
readily exploitable. 
Finally, our study only characterized one edge of the 
application space. While we found no evidence of tele
misuse, background recording of audio or video, or abusive 
network connections, one might argue that such malicious 
functionality is less likely to occur in popular applications. 
We focused our study on popular applications to 
characterize those most frequently used. Future studies 
should take samples that span applic
However, even these samples may miss the existence of 
truly malicious applications. Future studies should also 
consider several additional attacks, including installing new 
applications , JNI execution , address book exfiltration, 
destruction of SDcard contents, and phishing 
 
X. Related Work 

Many tools and techniques have been designed to identify 
security concerns in software. Software written in C is 
particularly susceptible to programming errors that result in 
vulnerabilities. Ashcraft and Engler use compiler extensions 
to identify errors in range checks. MOPS uses model 
checking to scale to large amounts of source code 
applications are inherently safer than C ap
avoid simple vulnerabilities such as buffer overflows.
and Fox compare eight different open source and 
commercially available Java source code analysis tools, 
finding that no one tool detects all vulnerabilities. 
Hovemeyer and Pugh study six popular Java applications 
and libraries using FindBugs extended
checks. While analysis included non security bugs, the 
results motivate a strong need for automated analysis by all 
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spite existing limitations. In 
urther studies of this kind, we see the potential 

to integrate these tools into an application certification 
process. We leave such discussions for future work, noting 
that such integration is challenging for both logistical and 

hnical level, we found the 
security characteristics of the top 1,100 free popular 
applications to be consistent with smaller studies. Our 
findings indicate an overwhelming concern for misuse of 
privacy sensitive information such as phone identifiers and 
location information. One might speculate this occur due to 
the difficulty in assigning malicious intent. 

n identifying the existence the 
information misuse, our manual source code inspection 

is misused. We found 
phone identifiers, e.g., phone number, IMEI, IMSI, and 

sed for everything from “cookieesque” 
tracking to account numbers. Our findings also support the 
existence of databases external to cellular providers that link 

ifiers such as the IMEI to personally identifiable 

Our analysis also identified significant penetration of ad and 
analytic libraries, occurring in 51% of the studied 
applications. While this might not be surprising for free 

number of ad and analytics libraries 
included per application was unexpected. One application 
included as many as eight different libraries. It is unclear 
why an application needs more than one advertisement and 

perspective, we found that many 
developers fail to take necessary security precautions. For 
example, sensitive information is frequently written to 
Android’s centralized logs, as well as occasionally 
broadcast to unprotected IPC. We also identified the 

tential for IPC injection attacks; however, no cases were 

Finally, our study only characterized one edge of the 
le we found no evidence of telephony 

misuse, background recording of audio or video, or abusive 
ork connections, one might argue that such malicious 

functionality is less likely to occur in popular applications. 
We focused our study on popular applications to 
characterize those most frequently used. Future studies 
should take samples that span application popularity. 
However, even these samples may miss the existence of 
truly malicious applications. Future studies should also 
consider several additional attacks, including installing new 

dress book exfiltration, 
Dcard contents, and phishing . 

Many tools and techniques have been designed to identify 
security concerns in software. Software written in C is 
particularly susceptible to programming errors that result in 

and Engler use compiler extensions 
to identify errors in range checks. MOPS uses model 
checking to scale to large amounts of source code . Java 

herently safer than C applications and 
nerabilities such as buffer overflows. Ware 

and Fox compare eight different open source and 
commercially available Java source code analysis tools, 

no one tool detects all vulnerabilities. 
opular Java applications 

braries using FindBugs extended with additional 
security bugs, the 

results motivate a strong need for automated analysis by all 
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developers. Livshits and Lam focus on Java 
applications. In the Web server environment, inputs are 
easily controlled by an adversary, and left unchecked can 
lead to SQL injection, crosssite scripting, HTTP re
splitting, path traversal, and command injection. Felmetsger 
et al also study Java based web applications; they advance 
vulnerability analysis by providing automatic detection of 
application specific logic errors. 
Spyware and privacy breaching software have also been 
studied. Kirda et al. consider behavioral properties of BHOs 
and toolbars. Egele et al. target information leaks by 
browser based spyware explicitly using dynamic taint 
analysis. Panaorama  considers privacy breaching malware 
in general using whole system, fine grained 
Privacy Oracle  uses differential black box fuzz testing to 
find privacy leaks in applications. 
On smartphones, TaintDroid  uses system
taint tracking to identify privacy leaks in An
applications. By using static analysis, we were able to study 
a far greater number of applications (1,100 vs. 30). 
However, TaintDroid’s analysis confirms the exf
information, while our static analysis only con
potential for it. Kirin  also uses static anal
on permissions and other application configuration data, 
whereas our study analyzes source code. Finally, PiOS 
performs static analysis on iOS applications for the iPhone. 
The PiOS study found the majority of analyzed applications 
to leak the device ID and over half of the applications 
include advertisement and analytics libraries.
 
XI. Conclusions 
objective behind this paper presentation was to discuss all 
basic details to start android application and to overcome 
the technical jargons which come as a big constraint on the 
way of beginner programmer. Smartphones are rapidly 
becoming a dominant computing platform. Low barriers of 
entry for application developers increases the security risk 
for end users. In this paper, we described the ded 
decompiler for Android applications and used decompiled 
source code to perform a breadth study of both 
functionality and vulnerabilities. While our findings of 
exposure of phone identifiers and location ar
with previous studies, our analysis framework allows us to 
observe not only the existence of dangerous functionality, 
but also how it occurs within the context of the application.
Moving forward, we foresee ded and our analysis 
specifications as enabling technologies that will open new 
doors for application certification. However, the integratio
of these technologies into an application certification 
process requires overcoming logistical and technical 
challenges. Our future work will consider these chal
and broaden our analysis to new areas, including application 
installation, malicious JNI, and phishing. 
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