
VVoolluummee--88,, NNuummbbeerr--22 JJaann--JJuunn

�

�

Android Application D
Bhiwani Institute of Technology and Sciences (MDU Rohtak)

Abstract- Android is now the most used mobile operating
growing at breakneck speed and with almost as many apps
complicate smart-phone security. Although recent efforts have shed light on particular security issues, there remains little
insight into broader security characteristics of smartphone application
start working on eclipse and develop an application and get it run on emulator. And
application security by studying 1,100 popular free Android applications. We introduc
Android application source code directly from its installation image. Our analysis uncovered pervasive use/misuse of
personal/phone identifiers, and deep penetration of advertising and analytics networks. However, we di
malware or exploitable vulnerabilities in the studied applications. We conclude by considering the implications of these
preliminary findings and offer directions for future analysis.

I. Introduction

Android is a Linux based, open source mobile operating
system developed by Open Handset Alliance led by Google
to develop apps for Android devices. To start with we use a
set of tools that are included in the Android SDK. Once we
have downloaded and installed the SDK, we can access
these tools right from our Eclipse IDE, through the ADT
plugin, or from the command line. Developing with Eclipse
is the preferred method because it can directly invoke the
tools that we need while developing applications..
The basic steps for developing applications are shown in
Figure 1. The development steps encompass four
development phases, which include:

� Setup: During this phase we install and set up our

development environment. We also create Android
Virtual Devices (AVDs) and connect hardware
devices, on which we can install our applications.

� Development: During this phase we set up and develop
our Android project, which contains all of the source
code and resource files for our application.

� Debugging and Testing: During this phase we build our
project into a debug gable .apk package that we can
install and run on the emulator.

� Publishing: During this phase we configure and build
our application for release and distribute our
application to users.

Application markets such as Apple’s App Store and
Google’s Android Market provide point and click access to
hundreds of thousands of paid and free applications.
The fluidity of the markets also presents enormous security
challenges. Rapidly developed and deployed applications ,
coarse permission systems, privacy invading behaviours ,
malware, and limited security models have led to
exploitable phones and applications. Although users
seemingly desire it, markets are not in a position to provide
security in more than a superficial way. The lack of a
common definition for security and the volume of
applications ensures that some malicious, questionable, and
vulnerable applications will find their way to market.
In this paper, we broadly characterize the security of
applications in the Android Market. In this, we make two
primary contributions:
• We design and implement a Dalvik decompilier, ded. ded

recovers an application’s Java source solely from its
installation image by inferring lost types, performing

nn 22001155 pppp.. 112211--113300�� ���� �����������	��	���
�� � � �
�����	�����
��

Android Application Development and its Security
Krishma

Bhiwani Institute of Technology and Sciences (MDU Rohtak)
krishmatetarwal.k3@gmail.com�

�

is now the most used mobile operating system in the world. The Google Play app store has been
growing at breakneck speed and with almost as many apps as the Apple app store. The fluidity of application markets

phone security. Although recent efforts have shed light on particular security issues, there remains little
insight into broader security characteristics of smartphone applications. This paper gives a complete knowledge of how to
start working on eclipse and develop an application and get it run on emulator. And to better understand smart

studying 1,100 popular free Android applications. We introduce the ded decompiler, which recovers
Android application source code directly from its installation image. Our analysis uncovered pervasive use/misuse of
personal/phone identifiers, and deep penetration of advertising and analytics networks. However, we did not find evidence of
malware or exploitable vulnerabilities in the studied applications. We conclude by considering the implications of these
preliminary findings and offer directions for future analysis.

mobile operating
system developed by Open Handset Alliance led by Google
to develop apps for Android devices. To start with we use a
set of tools that are included in the Android SDK. Once we
have downloaded and installed the SDK, we can access

lipse IDE, through the ADT
in, or from the command line. Developing with Eclipse

is the preferred method because it can directly invoke the
tools that we need while developing applications..

pplications are shown in
Figure 1. The development steps encompass four

Setup: During this phase we install and set up our
development environment. We also create Android
Virtual Devices (AVDs) and connect hardware

es, on which we can install our applications.
Development: During this phase we set up and develop
our Android project, which contains all of the source
code and resource files for our application.
Debugging and Testing: During this phase we build our

oject into a debug gable .apk package that we can

Publishing: During this phase we configure and build
our application for release and distribute our

Application markets such as Apple’s App Store and
Google’s Android Market provide point and click access to
hundreds of thousands of paid and free applications.
The fluidity of the markets also presents enormous security
challenges. Rapidly developed and deployed applications ,

s, privacy invading behaviours ,
malware, and limited security models have led to
exploitable phones and applications. Although users
seemingly desire it, markets are not in a position to provide
security in more than a superficial way. The lack of a

on definition for security and the volume of
applications ensures that some malicious, questionable, and
vulnerable applications will find their way to market.
In this paper, we broadly characterize the security of

his, we make two

We design and implement a Dalvik decompilier, ded. ded
recovers an application’s Java source solely from its
installation image by inferring lost types, performing

DVM-to-JVM bytecode retargeting, and translating class
and method structures.

• We analyze 21 million LOC retrieved from the top

1,100 free applications in the Android Market using
automated tests and manual inspection. Where
possible, we identify root causes and posit the severity
of discovered vulnerabilities.

Our popularity focused security analysis provides in
into the most frequently used applications
This paper is an initial but not final word on Android
application security. Thus, one should be circumspect about
any interpretation of the following results as a definitive
statement about how secure applications are today. Rather,
we believe these results are indicative of the current state,
but there remain many aspects of the applications that
warrant deeper analysis.

II. BACKGROUND

Android: Android is an OS designed for smartphones.
Depicted in Figure 1, Android provides a sandboxed
application execution environment. A customized embedded
Linux system interacts with the phone hardware and an off
processor cellular radio. The Binder middlewar
application API runs on top of Linux. To simplify, an
application’s only interface to the phone is through these
APIs. Each application is executed within a Dalvik Virtual
Machine (DVM) running under a unique UNIX uid. The
phone comes preinstalled with a selection of
applications, e.g., phone dialer, address book.

Applications interact with each other and the phone
through different forms of IPC. Intents
interprocess messages that are directed to particular
applications or systems services, or broadcast to
applications subscribing to a particular intent type.
Persistent content provider data stores are queried through
SQL-like interfaces. Background services
callback interfaces that applications use to trigger actions
access data. Finally user interface activities
action signals from the system and other applications.
Binder acts as a mediation point for all IPC. Access to
system resources (e.g., GPS receivers, text messaging,
phone services, and the Internet), data (e.g., address books,
email) and IPC is governed by permissions assigned at
install time. The permissions requested by the application
and the permissions required to access the application’s

� � � �
�����	�����
�� ��

�����������

Security

system in the world. The Google Play app store has been

The fluidity of application markets
phone security. Although recent efforts have shed light on particular security issues, there remains little

This paper gives a complete knowledge of how to
to better understand smart-phone

e the ded decompiler, which recovers
Android application source code directly from its installation image. Our analysis uncovered pervasive use/misuse of

d not find evidence of
malware or exploitable vulnerabilities in the studied applications. We conclude by considering the implications of these

JVM bytecode retargeting, and translating class

1 million LOC retrieved from the top
1,100 free applications in the Android Market using

nd manual inspection. Where
sible, we identify root causes and posit the severity

analysis provides insight
into the most frequently used applications
This paper is an initial but not final word on Android
application security. Thus, one should be circumspect about
any interpretation of the following results as a definitive

about how secure applications are today. Rather,
we believe these results are indicative of the current state,
but there remain many aspects of the applications that

Android is an OS designed for smartphones.
, Android provides a sandboxed

application execution environment. A customized embedded
Linux system interacts with the phone hardware and an off
processor cellular radio. The Binder middleware and
application API runs on top of Linux. To simplify, an
application’s only interface to the phone is through these
APIs. Each application is executed within a Dalvik Virtual
Machine (DVM) running under a unique UNIX uid. The

th a selection of system
, e.g., phone dialer, address book.

Applications interact with each other and the phone
Intents are typed

interprocess messages that are directed to particular
rvices, or broadcast to

applications subscribing to a particular intent type.
data stores are queried through

 provide RPC and
callback interfaces that applications use to trigger actions or

activities receive named
signals from the system and other applications.

Binder acts as a mediation point for all IPC. Access to
system resources (e.g., GPS receivers, text messaging,

nternet), data (e.g., address books,
email) and IPC is governed by permissions assigned at
install time. The permissions requested by the application
and the permissions required to access the application’s

VVoolluummee--88,, NNuummbbeerr--22 JJaann--JJuunn

�

�
interfaces/data are defined in its manifest file.
an application is allowed to access a resource or interface if
the required permission allows it.

Figure 1: The Android system architecture

Permission assignment—and indirectly the security policy
for the phone—is largely delegated to the phone’s owner:
the user is presented a screen listing the permissions an
application requests at install time, which they can accept or
reject.

Dalvik Virtual Machine: Android applications are written
in Java, but run in the DVM. The DVM and Java byte
runtime environments differ substantially:
Application Structure. Java applications are composed
one or more .class files, one file per class. The JVM loads
the bytecode for a Java class from the associated

.class file as it is referenced at run time. Conversely, a
Dalvik application consists of a single .dex file containing
all application classes.

Figure 2 provides a conceptual view of the compilation
process for DVM applications. After the Java compiler
creates JVM bytecode, the Dalvik dx compi
the .class files, recompiles them to Dalvik bytecode, and
writes the resulting application into a single .dex file. This
process consists of the translation, reconstruction, and
interpretation of three basic elements of the application: the
constant pools, the class definitions, and the data segment.
A constant pool describes, not surprisingly, the constants
used by a class. This includes, among other items,
references to other classes, method names, and numerical
constants. The class definitions consist in the basic
information such as access flags and class names. The data
element contains the method code executed by the target
VM, as well as other information related to methods (e.g.,
number of DVM registers used, local variable table, and
operand stack sizes) and to class and instance variables.

Figure 2: Compilation process for DVM applications

Register architecture The DVM is register
existing JVMs are stack-based. Java bytecode can assign
local variables to a local variable table before pushing them

nn 22001155 pppp.. 112211--113300�� ���� �����������	��	���
�� � � �
�����	�����
��

file. To simplify,
an application is allowed to access a resource or interface if

: The Android system architecture

and indirectly the security policy
the phone’s owner:

the user is presented a screen listing the permissions an
application requests at install time, which they can accept or

: Android applications are written
in Java, but run in the DVM. The DVM and Java byte code

. Java applications are composed of
one or more .class files, one file per class. The JVM loads
the bytecode for a Java class from the associated

time. Conversely, a
Dalvik application consists of a single .dex file containing

provides a conceptual view of the compilation
process for DVM applications. After the Java compiler
creates JVM bytecode, the Dalvik dx compiler consumes
the .class files, recompiles them to Dalvik bytecode, and
writes the resulting application into a single .dex file. This
process consists of the translation, reconstruction, and
interpretation of three basic elements of the application: the

nstant pools, the class definitions, and the data segment.
A constant pool describes, not surprisingly, the constants
used by a class. This includes, among other items,
references to other classes, method names, and numerical

ns consist in the basic
information such as access flags and class names. The data
element contains the method code executed by the target
VM, as well as other information related to methods (e.g.,
number of DVM registers used, local variable table, and

erand stack sizes) and to class and instance variables.

: Compilation process for DVM applications

The DVM is register-based, whereas
based. Java bytecode can assign

variable table before pushing them

onto an operand stack for manipulation by opcodes, but it
can also just work on the stack without explicitly storing
variables in the table. Dalvik bytecode assigns local
variables to any of the 216 available registers. T
opcodes directly manipulate registers, rather than accessing
elements on a program stack.

Instruction set The Dalvik bytecode instruction set is
substantially different than that of Java. Dalvik has 218
opcodes while Java has 200; however, the nature of the
opcodes is very different.Dalvik instructions tend to be
longer than Java instructions; they often include the source
and destination registers. As a result, Dalvik applications
require fewer instructions. In Dalvik bytecode, applications
have on average 30% fewer instructions than in Java, but
have a 35% larger code size (bytes).

Constant pool structure. Java applications replicate
elements in constant pools within the multiple .class files,
e.g., referrer and referent method names. The dx compiler
eliminates much of this replication. Dalvik uses a single
pool that all classes simultaneously reference.

Control flow Structure. Control flow ele
loops, switch statements and exception handlers are
structured differently in Dalvik and Java bytecode. Java
bytecode structure loosely mirrors the source code, whereas
Dalvik bytecode does not.
Ambiguous primitive types. Java bytecode variab
assignments distinguish between integer (int) and single
precision floating point (float) constants and between long
integer (long) and double precision floating point (double)
constants. However, Dalvik assignments (int/float and
long/double) use the same opcodes for integers and floats,
e.g., the opcodes are untyped beyond specifying precision.

Null references. The Dalvik bytecode does not specify
null type, instead opting to use a zero value constant. Thus,
constant zero values present in the Dalvi
ambiguous typing that must be recovered.

Comparison of object references. The Java bytecode
typed opcodes for the comparison of object references (if
acmpeq and if acmpne) and for null comparison of object
references (ifnull and ifnonnull). The Dalvik bytecode uses
a more simplistic integer comparison for these purposes: a
comparison between two integers, and a comparison of an
integer and zero respectively. This requires the
decompilation process to recover types for integer
comparisons used in DVM bytecode.

Storage of primitive types in arrays. The Dalvik byte code
uses ambiguous opcodes to store and retrieve elements in
arrays of primitive types (e.g., aget for int/float and aget
wide for long/double) whereas the correspondi
bytecode is unambiguous. The array type must be recovered
for correct translation.

III. ECLIPSE
Eclipse is an integrated development environment (IDE). It
contains a base workspace and an extensible plugin system
for customizing the environment. Written mostly in Java,
Eclipse can be used to develop applications in Java.

� � � �
�����	�����
�� ��

�����������

onto an operand stack for manipulation by opcodes, but it
can also just work on the stack without explicitly storing
variables in the table. Dalvik bytecode assigns local

available registers. The Dalvik
opcodes directly manipulate registers, rather than accessing

The Dalvik bytecode instruction set is
substantially different than that of Java. Dalvik has 218
opcodes while Java has 200; however, the nature of the
opcodes is very different.Dalvik instructions tend to be
longer than Java instructions; they often include the source

s. As a result, Dalvik applications
require fewer instructions. In Dalvik bytecode, applications
have on average 30% fewer instructions than in Java, but

. Java applications replicate
constant pools within the multiple .class files,

e.g., referrer and referent method names. The dx compiler
eliminates much of this replication. Dalvik uses a single
pool that all classes simultaneously reference.

. Control flow elements such as
loops, switch statements and exception handlers are
structured differently in Dalvik and Java bytecode. Java
bytecode structure loosely mirrors the source code, whereas

Java bytecode variable
assignments distinguish between integer (int) and single
precision floating point (float) constants and between long
integer (long) and double precision floating point (double)
constants. However, Dalvik assignments (int/float and

ame opcodes for integers and floats,
e.g., the opcodes are untyped beyond specifying precision.

. The Dalvik bytecode does not specify a
null type, instead opting to use a zero value constant. Thus,
constant zero values present in the Dalvik byte code have

. The Java bytecode uses
typed opcodes for the comparison of object references (if
acmpeq and if acmpne) and for null comparison of object

ifnonnull). The Dalvik bytecode uses
ison for these purposes: a

comparison between two integers, and a comparison of an
integer and zero respectively. This requires the
decompilation process to recover types for integer

. The Dalvik byte code
uses ambiguous opcodes to store and retrieve elements in
arrays of primitive types (e.g., aget for int/float and aget
wide for long/double) whereas the corresponding Java
bytecode is unambiguous. The array type must be recovered

Eclipse is an integrated development environment (IDE). It
contains a base workspace and an extensible plugin system

Written mostly in Java,
Eclipse can be used to develop applications in Java.

VVoolluummee--88,, NNuummbbeerr--22 JJaann--JJuunn

�

�

Figure 3. Steps for Application Development

The initial codebase originated from IBM. The Eclipse
software development kit (SDK), which includes the Java
development tools, is meant for Java developers. Users can
extend its abilities by installing plugins written for the
Eclipse Platform, such as development toolkits for other
programming languages, and can write and contribute their
own plugin modules.

Released under the terms of the Eclipse Public License,
Eclipse SDK is free and open source software (Table 1).

Creating an Android Project
An Android project contains all the files that comprise the
source code for Android app. The Android SDK tools make
it easy to start a new Android project with a set of default
project directories and files.

 Table 1. Eclipse Releases

Create a Project with Eclipse
1. Click New in the toolbar.
2. In the window that appears, open
the Android folder, select Android Application Project
and click Next.

nn 22001155 pppp.. 112211--113300�� ���� �����������	��	���
�� � � �
�����	�����
��

. Steps for Application Development

The initial codebase originated from IBM. The Eclipse
software development kit (SDK), which includes the Java

ant for Java developers. Users can
extend its abilities by installing plugins written for the
Eclipse Platform, such as development toolkits for other
programming languages, and can write and contribute their

f the Eclipse Public License,
Eclipse SDK is free and open source software (Table 1).

An Android project contains all the files that comprise the
source code for Android app. The Android SDK tools make

ndroid project with a set of default

In the window that appears, open
Application Project,

Figure 4.The New Android App Project wizard in Eclipse.

3. Fill in the form that appears:

• Application Name is the app name that appears
to users. For this project, use "My First App."

• Project Name is the name of your p
directory and the name visible in Eclipse.

• Package Name is the package namespace for
your app (following the same rules as packages in the Java
programming language). Your package name must be
unique across all packages installed on the Android syst
For this reason, it's generally best if you use a name that
begins with the reverse domain name of your organization
or publisher entity. For this project, you can use something
like "com.example.myfirstapp." However, you cannot
publish your app on Google Play using the "com.example"
namespace.

• Minimum Required SDK is the lowest version
of Android that your app supports, indicated using the
level. To support as many devices as possible, you should
set this to the lowest version available that allows your app
to provide its core feature set. If any feature of your app is
possible only on newer versions of Android and it's not
critical to the app's core feature set, you can enable the
feature only when running on the versions that support it.
Leave this set to the default value for this project.

• Target SDK indicates the highest version of Android (also
using the API level) with which you have tested with your
application.
As new versions of Android become available, you should
test your app on the new version and update this value to
match the latest API level in order to take advantage of new
platform features.

• Compile With is the platform version against which you
will compile your app. By default, this is set to the latest
version of Android available in your SDK. (It should be
Android 4.1 or greater; if you don't have such a version
available, you must install one using the
You can still build your app to support older versions, but
setting the build target to the latest version allows you to
enable new features and optimize your app for a great user
experience on the latest devices.

• Theme specifies the Android UI style to apply for your app.
You can leave this alone.
Click Next.

� � � �
�����	�����
�� ��

�����������

The New Android App Project wizard in Eclipse.

is the app name that appears
to users. For this project, use "My First App."

is the name of your project

is the package namespace for
your app (following the same rules as packages in the Java
programming language). Your package name must be
unique across all packages installed on the Android system.
For this reason, it's generally best if you use a name that
begins with the reverse domain name of your organization
or publisher entity. For this project, you can use something
like "com.example.myfirstapp." However, you cannot

gle Play using the "com.example"

is the lowest version
of Android that your app supports, indicated using the API

. To support as many devices as possible, you should
version available that allows your app

to provide its core feature set. If any feature of your app is
possible only on newer versions of Android and it's not
critical to the app's core feature set, you can enable the

ons that support it.
Leave this set to the default value for this project.

indicates the highest version of Android (also
) with which you have tested with your

As new versions of Android become available, you should
test your app on the new version and update this value to

level in order to take advantage of new

is the platform version against which you
will compile your app. By default, this is set to the latest
version of Android available in your SDK. (It should be

if you don't have such a version
available, you must install one using the SDK Manager).

ld your app to support older versions, but
setting the build target to the latest version allows you to
enable new features and optimize your app for a great user

specifies the Android UI style to apply for your app.

VVoolluummee--88,, NNuummbbeerr--22 JJaann--JJuunn

�

�
4. On the next screen to configure the project, leave
the default selections and click Next.
5. The next screen can help you create a launcher
icon for your app.
You can customize an icon in several ways and the tool
generates an icon for all screen densities. Before you
publish your app, you should be sure your icon meets the
specifications defined in the Iconography design guide.
Click Next.
6. Now you can select an activity template from
which to begin building your app.
For this project, select BlankActivity and click
7. Leave all the details for the activity in their
default state and click Finish.
Running Your App
How you run your app depends on two things: whether you
have a real Android-powered device and whether you're
using Eclipse.
Before you run your app, you should be aware of a few
directories and files in the Android project:
AndroidManifest.xml
The manifest file describes the fundamental characteristics
of the app and defines each of its components
One of the most important elements your manifest should
include is the <uses-sdk> element. This declares your app's
compatibility with different Android versions using
the android:minSdkVersion andandroid:targetSdkVersio
n attributes. For our first app, it should look like this:

<manifest
xmlns:android="http://schemas.android.com/apk/res/androi
d" ...
 <uses-sdk android:minSdkVersion
android:targetSdkVersion="17"

</manifest>

You should always set the android:targetSdkVersion
high as possible and test your app on the corresponding
platform version.

src/
Directory for your app's main source files. By default, it
includes an Activity class that runs when your app is
launched using the app icon.
res/
Contains several sub-directories for app resources
just a few:
drawable-hdpi/
Directory for drawable objects (such as bitmaps) that are
designed for high-density (hdpi) screens. Other drawable
directories contain assets designed for other screen
densities.
layout/
Directory for files that define your app's user interface.
values/
Directory for other various XML files that contain a
collection of resources, such as string and color definitions.
Run on a Real Device
If you have a real Android-powered device, here's how you
can install and run your app:
1. Plug in your device to your development machine
with a USB cable. If you're developing on Windows, you
might need to install the appropriate USB driver for your
device.

nn 22001155 pppp.. 112211--113300�� ���� �����������	��	���
�� � � �
�����	�����
��

On the next screen to configure the project, leave

The next screen can help you create a launcher

You can customize an icon in several ways and the tool
generates an icon for all screen densities. Before you
publish your app, you should be sure your icon meets the

design guide.

Now you can select an activity template from

and click Next.
Leave all the details for the activity in their

How you run your app depends on two things: whether you
powered device and whether you're

Before you run your app, you should be aware of a few

describes the fundamental characteristics
the app and defines each of its components

One of the most important elements your manifest should
element. This declares your app's

compatibility with different Android versions using
android:targetSdkVersio

attributes. For our first app, it should look like this:

"http://schemas.android.com/apk/res/androi
... >

android:minSdkVersion="8"
 />

 ...

android:targetSdkVersion as
high as possible and test your app on the corresponding

Directory for your app's main source files. By default, it
lass that runs when your app is

app resources. Here are

Directory for drawable objects (such as bitmaps) that are
density (hdpi) screens. Other drawable

directories contain assets designed for other screen

files that define your app's user interface.

Directory for other various XML files that contain a
collection of resources, such as string and color definitions.

powered device, here's how you

Plug in your device to your development machine
with a USB cable. If you're developing on Windows, you
might need to install the appropriate USB driver for your

2. Enable USB debugging on your device.
• On most devices running Andr

you can find the option under
Applications > Development.

• On Android 4.0 and newer, it's in
Developer options.

Note: On Android 4.2 and newer,
options is hidden by default. To make it available,
go toSettings > About phone
number seven times. Return to the previous
screen to findDeveloper options

To run the app from Eclipse:
Open one of your project's files and click
toolbar.
1. In the Run as window that appears,
select Android Application and click OK
Eclipse installs the app on your connected device and starts
it.
Run on the Emulator
To run your app on the emulator you need to first create an
Android Virtual Device (AVD). An AVD is a device
configuration for the Android emulator that allows you to
model different devices.

Figure 5 The AVD Manager showing a few virtual devices.

To create an AVD:
1. Launch the Android Virtual Device Manager:

In Eclipse, click Android Virtual Device Manager
the toolbar.
2. In the Android Virtual Device Manager
click New.
3. Fill in the details for the AVD. Give it a name, a
platform target, an SD card size, and a skin (HVGA is
default).
4. Click Create AVD.
5. Select the new AVD from the
Device Manager and click Start.
6. After the emulator boots up, unlock the emulator
screen.
To run the app from Eclipse:
1. Open one of your project's files and click
 from the toolbar.
2. In the Run as window that appears,
select Android Application and click OK
Eclipse installs the app on your AVD and starts it.

� � � �
�����	�����
�� ��

�����������

on your device.
On most devices running Android 3.2 or older,
you can find the option under Settings >

On Android 4.0 and newer, it's in Settings >

On Android 4.2 and newer, Developer
is hidden by default. To make it available,

Settings > About phone and tap Build
seven times. Return to the previous

Developer options.

 Run from the

window that appears,
OK.

Eclipse installs the app on your connected device and starts

To run your app on the emulator you need to first create an
(AVD). An AVD is a device

configuration for the Android emulator that allows you to

The AVD Manager showing a few virtual devices.

Launch the Android Virtual Device Manager:

In Eclipse, click Android Virtual Device Manager from

Android Virtual Device Manager panel,

Fill in the details for the AVD. Give it a name, a
card size, and a skin (HVGA is

Select the new AVD from the Android Virtual

After the emulator boots up, unlock the emulator

and click Run

window that appears,
OK.

Eclipse installs the app on your AVD and starts it.

VVoolluummee--88,, NNuummbbeerr--22 JJaann--JJuunn

�

�

IV. The ded decompiler
Building a decompiler from DEX to Java for the study
proved to be surprisingly challenging. Unfortunately, prior
to our work, there existed no functional tool for the Dalvik
bytecode. Because of the vast differences between JVM
and DVM, simple modification of existing decompilers was
not possible.
This choice to decompile the Java source rather than operate
on the DEX opcodes directly was grounded in two reasons.
First, we wanted to leverage existing tools for code analysis.
Second, we required access to source code to identify false
positives resulting from automated code analysis, e.g.,
perform manual confirmation.
ded extraction occurs in three stages: a
optimization, and c) decompilation.

Application Retargeting
The initial stage of decompilation retargets the application
.dex file to Java classes. Figure 4 overviews this process: (1)
recovering typing information, (2) translating the constant
pool, and (3) retargeting the bytecode.
Type Inference: The first step in retargeting is to identify
class and method constants and variables. However, t
Dalvik bytecode does not always provide enough
information to determine the type of a variable or constant
from its register declaration. There are two generalized
cases where variable types are ambiguous: 1) constant and
variable declaration only specifies the variable width (e.g.,
32 or 64 bits), but not whether it is a float, integer, or null
reference; and 2) comparison operators do not distinguish
between integer and object reference comparison (i.e., null
reference checks).
Type inference has been widely studied. The seminal
Hindley-Milner algorithm provides the basis for type
inference algorithms used by many languages such
Haskell and ML. These approaches determine unknown
types by observing how variables are used in operations
with known type operands. Similar techniques are used by
languages with strong type inference, e.g., OCAML, as well
weaker inference, e.g., Perl
ded adopts the accepted approach: it infers register types by
observing how they are used in subsequent operations with
known type operands. Dalvik registers loosely correspond to
Java variables. Because Dalvik bytecode reuses registers
whose variables are no longer in scope, we must evaluate
the register type within its context of the method control
flow, i.e., inference must be path sensitive

Figure 3: Dalvik bytecode retargeting

nn 22001155 pppp.. 112211--113300�� ���� �����������	��	���
�� � � �
�����	�����
��

The ded decompiler
Building a decompiler from DEX to Java for the study

surprisingly challenging. Unfortunately, prior
to our work, there existed no functional tool for the Dalvik
bytecode. Because of the vast differences between JVM
and DVM, simple modification of existing decompilers was

ile the Java source rather than operate
on the DEX opcodes directly was grounded in two reasons.
First, we wanted to leverage existing tools for code analysis.
Second, we required access to source code to identify false

ode analysis, e.g.,

a) retargeting, b)

The initial stage of decompilation retargets the application
ses. Figure 4 overviews this process: (1)

recovering typing information, (2) translating the constant

Type Inference: The first step in retargeting is to identify
class and method constants and variables. However, the
Dalvik bytecode does not always provide enough
information to determine the type of a variable or constant
from its register declaration. There are two generalized
cases where variable types are ambiguous: 1) constant and

fies the variable width (e.g.,
32 or 64 bits), but not whether it is a float, integer, or null
reference; and 2) comparison operators do not distinguish
between integer and object reference comparison (i.e., null

widely studied. The seminal
Milner algorithm provides the basis for type

inference algorithms used by many languages such as
Haskell and ML. These approaches determine unknown
types by observing how variables are used in operations

operands. Similar techniques are used by
languages with strong type inference, e.g., OCAML, as well

ded adopts the accepted approach: it infers register types by
observing how they are used in subsequent operations with
known type operands. Dalvik registers loosely correspond to
Java variables. Because Dalvik bytecode reuses registers

no longer in scope, we must evaluate
the register type within its context of the method control

Figure 3: Dalvik bytecode retargeting

There are three ways ded infers a register’s type. First, any
comparison of a variable or constant with a known type
exposes the type. Comparison of dissimilar types requires
type coercion in Java, which is propagated to the Dalvik
bytecode. Hence legal Dalvik comparisons always involve
registers of the same type. Second, instructions such as
addint only operate on specific types, manifestly exposing
typing information. Third, instructions that pass registers to
methods or use a return value expose the type
method signature.
The ded type inference algorithm proceeds as follows. After
reconstructing the control flow graph, ded identifies any
ambiguous register declaration. For each such register, ded
walks the instructions in the control flow graph s
from its declaration. Each branch of the control flow
encountered is pushed onto an inference stack, e.g., ded
performs a depth-first search of the control flow graph
looking for type exposing instructions. If a type exposing
instruction is encountered, the variable is labeled and the
process is complete for that variable.

There are three events that cause a branch search to
terminate: a) when the register is reassigned to another
variable (e.g., a new declaration is encountered), b) when a
return function is encountered, and c) when an exception is
thrown. After a branch is abandoned, the next branch is
popped off the stack and the search continues. Lastly, type
information is forward propagated, modulo register
reassignment, through the control flow graph from each
register declaration to all subsequent ambiguous uses. This
algorithm resolves all ambiguous primitive types, except for
one isolated case when all paths leading to a type
ambiguous instruction originate with ambiguous constant
instructions (e.g., all paths leading to an integer comparison
originate with registers assigned a constant zero). In this
case, the type does not impact decompila-tion, and a default
type (e.g., integer) can be assigned.
Constant Pool Conversion: The .dex and .cl
pools differ in that: a) Dalvik maintains a single constant
pool for the application and Java maintains one for each
class, and b) Dalvik bytecode places primitive type
constants directly in the bytecode, whereas Java bytecode
uses the constant pool for most references. We convert
constant pool information in two steps.
The first step is to identify which constants are needed for a
.class file. Constants include references to classes, methods,
and instance variables. ded traverses the b
method in a class, noting such references. ded also identifies
all constant primitives.
Once ded identifies the constants required by a class, it adds
them to the target .class file. For primitive type constants,
new entries are created. For class, method, and instance
variable references, the created Java constant pool entries
are based on the Dalvik constant pool entries. The constant
pool formats differ in complexity. Specifically, Dalvik
constant pool entries use significantly more ref
reduce memory overhead.
Method Code Retargeting: The final stage of the retargeting
process is the translation of the method code. First, we
preprocess the bytecode to reorganize structures that cannot
be directly retargeted. Second, we linearl
DVM bytecode and translate to the JVM.
The preprocessing phase addresses multidimensional arrays.
Both Dalvik and Java use blocks of bytecode instructions to
create multidimensional arrays; however, the instructions
have different semantics and layout. ded reorders and
annotates the bytecode with array size and type information
for translation.

� � � �
�����	�����
�� ��

�����������

There are three ways ded infers a register’s type. First, any
comparison of a variable or constant with a known type
exposes the type. Comparison of dissimilar types requires
type coercion in Java, which is propagated to the Dalvik

lvik comparisons always involve
registers of the same type. Second, instructions such as
addint only operate on specific types, manifestly exposing
typing information. Third, instructions that pass registers to
methods or use a return value expose the type via the

The ded type inference algorithm proceeds as follows. After
reconstructing the control flow graph, ded identifies any
ambiguous register declaration. For each such register, ded
walks the instructions in the control flow graph starting
from its declaration. Each branch of the control flow
encountered is pushed onto an inference stack, e.g., ded

first search of the control flow graph
looking for type exposing instructions. If a type exposing

ered, the variable is labeled and the

There are three events that cause a branch search to
terminate: a) when the register is reassigned to another
variable (e.g., a new declaration is encountered), b) when a

function is encountered, and c) when an exception is
thrown. After a branch is abandoned, the next branch is
popped off the stack and the search continues. Lastly, type
information is forward propagated, modulo register

ow graph from each
register declaration to all subsequent ambiguous uses. This
algorithm resolves all ambiguous primitive types, except for
one isolated case when all paths leading to a type
ambiguous instruction originate with ambiguous constant

ons (e.g., all paths leading to an integer comparison
originate with registers assigned a constant zero). In this

tion, and a default

Constant Pool Conversion: The .dex and .class file constant
) Dalvik maintains a single constant

pool for the application and Java maintains one for each
) Dalvik bytecode places primitive type

constants directly in the bytecode, whereas Java bytecode
constant pool for most references. We convert

he first step is to identify which constants are needed for a
.class file. Constants include references to classes, methods,
and instance variables. ded traverses the bytecode for each
method in a class, noting such references. ded also identifies

Once ded identifies the constants required by a class, it adds
them to the target .class file. For primitive type constants,

For class, method, and instance
variable references, the created Java constant pool entries
are based on the Dalvik constant pool entries. The constant
pool formats differ in complexity. Specifically, Dalvik
constant pool entries use significantly more references to

Method Code Retargeting: The final stage of the retargeting
process is the translation of the method code. First, we
preprocess the bytecode to reorganize structures that cannot
be directly retargeted. Second, we linearly traverse the

he preprocessing phase addresses multidimensional arrays.

Both Dalvik and Java use blocks of bytecode instructions to
create multidimensional arrays; however, the instructions

and layout. ded reorders and
annotates the bytecode with array size and type information

VVoolluummee--88,, NNuummbbeerr--22 JJaann--JJuunn

�

�

The bytecode translation linearly processes each Dalvik
instruction. First, ded maps each referenced register to a
Java local variable table index. Second, ded performs an
instruction translation for each encountered Dalvik
instruction. As Dalvik bytecode is more compact and takes
more arguments, one Dalvik instruction frequently expands
to multiple Java instructions. Third, ded patches the relative
offsets used for branches based on preprocessing
annotations. Finally, ded defines exception tables that
describe try/catch/finally blocks. The resulting translated
code is combined with the constant pool to creates a legal
Java .class file.

Optimization and Decompilation
At this stage, the retargeted .class files can be decompiled
using existing tools, e.g., Fernflower or Soot . However,
ded’s bytecode translation process yields unoptimized Java
code. For example, Java tools often optimize out
unnecessary assignments to the local variable table, e.g.,
unneeded return values. Without optimization, decompiled
code is complex and frustrates analysis. Furthermore,
artifacts of the retargeting pro-cess can lead to
decompilation errors in some decompilers. Th
bytecode optimization is easily demonstrated by considering
decompiled loops. Most decompilers convert for loops into
infinite loops with break instructions. While the resulting
source code is functionally equivalent to the original, it is
significantly more difficult to understand and analyze,
especially for nested loops. Thus, we use Soot as a post
retargeting optimizer. While Soot is centrally an
optimization tool with the ability to recover source code in
most cases, it does not process certain legal program idioms
(bytecode structures) generated by ded. In particular, we
encountered two central problems involving, 1) interactions
between synchronized blocks and exception handling, and
2) complex control flows caused by break statements. While
the Java bytecode generated by ded is legal, the source code
failure rate reported in the following section is almost
entirely due to Soot’s inability to extract source code from
these two cases. We will consider other decompilers in
future work, e.g., Jad , JD , and Fernflower .

V. Source Code Recovery Validation
We have performed extensive validation testing of ded . The
included tests recovered the source code for small, medium
and large open source applications and found no errors in
recovery. In most cases the recovered code was virtually
indistinguishable from the original source (modulo
comments and method local variable names, which are not
included in the bytecode).
Retargeting Failures. 0.59% of classes were not retar
geted. These errors fall into three classes:
references which prevent optimization by Soot,
violations caused by Android’s dex compiler and
tremely rare cases in which ded produces illegal byte
Recent efforts have focused on improving opti
well as redesigning ded with a formally de
inference apparatus. Parallel work on improv
been able to reduce these errors by a third, and we expect
further improvements in the near future.
Decompilation Failures. 5% of the classes were suc
cessfully retargeted, but Soot failed to recover the
sourcecode. Here we are limited by the state of the art in de
compilation. In order to understand the impact of de

nn 22001155 pppp.. 112211--113300�� ���� �����������	��	���
�� � � �
�����	�����
��

The bytecode translation linearly processes each Dalvik
instruction. First, ded maps each referenced register to a

Second, ded performs an
instruction translation for each encountered Dalvik
instruction. As Dalvik bytecode is more compact and takes
more arguments, one Dalvik instruction frequently expands

patches the relative
offsets used for branches based on preprocessing
annotations. Finally, ded defines exception tables that
describe try/catch/finally blocks. The resulting translated
code is combined with the constant pool to creates a legal

At this stage, the retargeted .class files can be decompiled
using existing tools, e.g., Fernflower or Soot . However,
ded’s bytecode translation process yields unoptimized Java
code. For example, Java tools often optimize out

ary assignments to the local variable table, e.g.,
unneeded return values. Without optimization, decompiled
code is complex and frustrates analysis. Furthermore,

cess can lead to
decompilation errors in some decompilers. The need for
bytecode optimization is easily demonstrated by considering
decompiled loops. Most decompilers convert for loops into
infinite loops with break instructions. While the resulting
source code is functionally equivalent to the original, it is

ficantly more difficult to understand and analyze,
especially for nested loops. Thus, we use Soot as a post-
retargeting optimizer. While Soot is centrally an
optimization tool with the ability to recover source code in

in legal program idioms
(bytecode structures) generated by ded. In particular, we
encountered two central problems involving, 1) interactions
between synchronized blocks and exception handling, and
2) complex control flows caused by break statements. While
the Java bytecode generated by ded is legal, the source code
failure rate reported in the following section is almost
entirely due to Soot’s inability to extract source code from
these two cases. We will consider other decompilers in

d , JD , and Fernflower .

Source Code Recovery Validation
We have performed extensive validation testing of ded . The
included tests recovered the source code for small, medium
and large open source applications and found no errors in

cases the recovered code was virtually
indistinguishable from the original source (modulo
comments and method local variable names, which are not

. 0.59% of classes were not retar-
geted. These errors fall into three classes: a) unresolved
references which prevent optimization by Soot, b) type
violations caused by Android’s dex compiler and c) ex-
tremely rare cases in which ded produces illegal byte-code.
Recent efforts have focused on improving opti-mization, as
well as redesigning ded with a formally de-fined type
inference apparatus. Parallel work on improv-ing ded has
been able to reduce these errors by a third, and we expect

. 5% of the classes were suc-
cessfully retargeted, but Soot failed to recover the
sourcecode. Here we are limited by the state of the art in de-
compilation. In order to understand the impact of de-

compiling ded retargeted classes verses ordinary Java
files, we performed a parallel study to evaluate Soot on Java
applications generated with traditional Java compilers. Of
31,553 classes from a variety of packages, Soot was able to
decompile 94.59%, indicating we cannot do better while
using Soot for decompilation.

VI. Evaluating Android Security

Our Android application study consisted of a broad range of
tests focused on three kinds of analysis: a
uncovered in previous studies and malware advisories,
searching for general coding security failures, and
exploring misuse/security failures in the use of Android
framework. The following discusses the pro
identifying and encoding the tests.

i. Analysis Specification
We used four approaches to evaluate recovered source code:
control flow analysis, data flow analysis
analysis, and semantic analysis. Unless otherwise
all tests used the Fortify SCA static anal
provides these four types of analysis. The following
discusses the general application of these approaches. The
details for our analysis specifications can be found in the
technical report

Control flow analysis. Control flow
constraints on the sequences of actions executed by an input
program P, classifying some of them as errors. Es
control flow rule is an automaton A whose input words are
sequences of actions of P—i.e., the rule monitors
of P. An erroneous action sequence is one that drives
a predefined error state. To statically detect violations
specified by A, the program analysis traces each control
flow path in the tool’s model of P
“executing” A on the actions executed along this path. Since
not all control flow paths in the model are feasible in
concrete executions of P, false positives are possible. False
negatives are also possible in principle, though uncommon
in practice. Figure 4 shows an example
sending intents. Here, the error state is reached if the intent
contains data and is sent unprotected without specifying the
target component, resulting in a potential unintended
information leakage.
Data flow analysis. Data flow analysis pe
declarative specification of problematic data flows in the
input program. For example, an Android phone contains
several pieces of private information that should never leave
the phone: the user’s phone number, IMEI (device ID),
IMSI (subscriber ID), and ICC-ID (SIM card serial
number). In our study, we wanted to check that this
information is not leaked to the network. While this
property can in principle be coded using automata, data flow
specification allows for a much easier encoding. The
specification declaratively labels program statements
matching certain syntactic patterns as data flow sources
sinks. Data flows between the sources and sinks are
violations.
Structural analysis. Structural analysis allows for
declarative pattern matching on the abstract syntax of the
input source code. Structural analysis specifications are not
concerned with program executions or data flow, therefore,
analysis is local and straightforward. For example, in our
study, we wanted to specify a bug pattern whe
application mines the device ID of the phone on which it

� � � �
�����	�����
�� ��

�����������

targeted classes verses ordinary Java .class
files, we performed a parallel study to evaluate Soot on Java
applications generated with traditional Java compilers. Of
31,553 classes from a variety of packages, Soot was able to

e cannot do better while

Evaluating Android Security

Our Android application study consisted of a broad range of
a) exploring issues

uncovered in previous studies and malware advisories, b)
searching for general coding security failures, and c)
exploring misuse/security failures in the use of Android

The following discusses the process of

We used four approaches to evaluate recovered source code:
data flow analysis, structural

. Unless otherwise specified,
static analysis suite, which

provides these four types of analysis. The following
discusses the general application of these approaches. The
details for our analysis specifications can be found in the

 analysis imposes
constraints on the sequences of actions executed by an input

ying some of them as errors. Essentially, a
whose input words are

monitors executions
is one that drives A into

. To statically detect violations
ysis traces each control

P, synchronously
along this path. Since

not all control flow paths in the model are feasible in
, false positives are possible. False

negatives are also possible in principle, though uncommon
in practice. Figure 4 shows an example automaton for

ror state is reached if the intent
contains data and is sent unprotected without specifying the
target component, resulting in a potential unintended

. Data flow analysis permits the
declarative specification of problematic data flows in the
input program. For example, an Android phone contains
several pieces of private information that should never leave
the phone: the user’s phone number, IMEI (device ID),

ID (SIM card serial
wanted to check that this

mation is not leaked to the network. While this
property can in principle be coded using automata, data flow

ch easier encoding. The
cation declaratively labels program statements

data flow sources and
. Data flows between the sources and sinks are

. Structural analysis allows for
on the abstract syntax of the

input source code. Structural analysis specifications are not
concerned with program executions or data flow, therefore,
analysis is local and straightforward. For example, in our
study, we wanted to specify a bug pattern where an Android
application mines the device ID of the phone on which it

VVoolluummee--88,, NNuummbbeerr--22 JJaann--JJuunn

�

�
runs. This pattern was defined using a structural rule that
stated that the input program called a method
whose enclosing class was
android.telephony.TelephonyManager.
Semantic analysis. Semantic analysis allows the
specification of a limited set of constraints on the values
used by the input program. For example, a property of
interest in our study was that an Android application does
not send SMS messages to hard-coded targets. To express
this property, we defined a pattern matching calls to
Android messaging methods such as sendTextMessage()
Seman-tic specifications permit us to directly specify that
the first parameter in these calls (the phone number) is not a
constant. The analyzer detects violations to this property
using constant propagation techniques well known in
program analysis literature.

ii. Analysis Overview
Our analysis covers both dangerous functionality and
vulnerabilities. Selecting the properties for
significant challenge. For brevity, we only provide an
overview of the specifications. The technical report provides
a detailed discussion of specifications.

Misuse of Phone Identifiers Previous studies identified
phone identifiers leaking to remote network servers. We
seek to identify not only the existence of data flows, but
understand why they occur.

Exposure of Physical Location Previous studies
location exposure to advertisement servers. Many
applications provide valuable location-aware utility, which
may be desired by the user. By manually inspecting code,
we seek to identify the portion of the application responsible
for the exposure.

Abuse of Telephony Services Smart-phone malware has
sent SMS messages to premium-rate numbers. We study the
use of hard-coded phone numbers to identify SMS and
voice call abuse.
Eavesdropping on Audio/Video Audio
eavesdropping is a commonly discussed smart
We examine cases where applications record audio or video
without control flows to UI code.
Botnet Characteristics (Sockets) PC
historically use non HTTP ports and protocols for command
and control. Most applications use HTTP client wrappers
for network connections, therefore, we examine
for suspicious behavior.

Harvesting Installed Applications The
applications is a valuable demographic for marketing. We
survey the use of APIs to retrieve this list to identify
harvesting of installed applications.
Use of Advertisement Libraries Previous studies identified
information exposure to ad and analytics
survey inclusion of ad and analytics libraries and the
information they access.
Dangerous Developer Libraries During our manual source
code inspection, we observed dangerous functionality
replicated between applications. We re
replication and the implications.
Android-specific Vulnerabilities We search for non
coding practices, including: writing sensitive information to
logs, unprotected broadcasts of information, IPC null
checks, injection at-tacks on intent actions, and delegation.

nn 22001155 pppp.. 112211--113300�� ���� �����������	��	���
�� � � �
�����	�����
��

runs. This pattern was defined using a structural rule that
stated that the input program called a method getDeviceId()
whose enclosing class was

. Semantic analysis allows the
specification of a limited set of constraints on the values
used by the input program. For example, a property of
interest in our study was that an Android application does

argets. To express
this property, we defined a pattern matching calls to

sendTextMessage().
tic specifications permit us to directly specify that

the first parameter in these calls (the phone number) is not a
t. The analyzer detects violations to this property

using constant propagation techniques well known in

Our analysis covers both dangerous functionality and
vulnerabilities. Selecting the properties for study was a
significant challenge. For brevity, we only provide an
overview of the specifications. The technical report provides

studies identified
mote network servers. We

seek to identify not only the existence of data flows, but

studies identified
location exposure to advertisement servers. Many

aware utility, which
may be desired by the user. By manually inspecting code,
we seek to identify the portion of the application responsible

phone malware has
numbers. We study the

coded phone numbers to identify SMS and

Audio and video
eavesdropping is a commonly discussed smart-phone threat.
We examine cases where applications record audio or video

 botnet clients
HTTP ports and protocols for command

and control. Most applications use HTTP client wrappers
for network connections, therefore, we examine Socket use

 list of installed
applications is a valuable demographic for marketing. We
survey the use of APIs to retrieve this list to identify

vious studies identified
information exposure to ad and analytics networks. We
survey inclusion of ad and analytics libraries and the

our manual source
ved dangerous functionality

replicated between applications. We re-port on this

search for non-secure
coding practices, including: writing sensitive information to

broadcasts of information, IPC null
tacks on intent actions, and delegation.

General Java Application Vulnerabilities
general Java application vulnerabilities, including mis
passwords, misuse of cryptography, and tr
vulnerabilities. Due to space limitations, individual results
for the general vulnerability analysis are reported in the
technical report.

VII. Application Analysis Results
In this section, we document the program analysis results
and manual inspection of identified violations.

Table 2: Access of Phone Identifier APIs

Identifier # Calls # Apps # w/ Permission
Phone Number 167 129 105
IMEI 378 216 184
IMSI 38 30 27
ICC-ID 33 21 21
Total Unique - 246 210
� Defined as having the READ_PHONE_STATE
permission.
† Only 1 app did not also have the INTERNET
permission.

i. Information Misuse

In this section, we explore how sensitive information is
being leaked through information sinks includ
OutputStream objects retrieved from
HTTP GET and POST parameters in
connections, and the string used for URL
work may also include SMS as a sink.

ii. Phone Identifiers
We studied four phone identifiers: phone number, IMEI
(device identifier), IMSI (subscriber identifier), and ICC
(SIM card serial number). We performed two types of
analysis: a) we scanned for APIs that access identifiers, and
b) we used data flow analysis to identify code capa
sending the identifiers to the network.
Table 2 summarizes APIs calls that receive phone
identifiers. In total, 246 applications (22.4%) included code
to obtain a phone identifier; however, only 210 of these
applications have the READ_PHONE_STATE permission
required to obtain access. Section 5.3 discusses code that
probes for permissions. We observe from Table 2 that
applications most frequently access the IMEI (216
applications, 19.6%). The phone number is used second
most (129 applications, 11.7%). Finally, the IMSI and ICC
ID are very rarely used (less than 3%).
Table 3 indicates the data flows that exfiltrate phone
identifiers. The 33 applications have the INTERNET
permission, but 1 application does not have the READ_
PHONE_STATE permission. We found data flows for all
four identifier types: 25 applications have IMEI data flows;
10 applications have phone number data flows; 5
applications have IMSI data flows; and 4 applications have
ICC-ID data flows.
To gain a better understanding of how phone identi
used, we manually inspected all 33 identified applications,
as well as several additional applications that contain calls
to identifier APIs. We confirmed exfiltration for all but one
application. In this case, code complexity hindered manual
confirmation; however we identified a different data flow
not found by program analysis. The analysis informs the
following findings.

� � � �
�����	�����
�� ��

�����������

General Java Application Vulnerabilities. We look for
vulnerabilities, including misuse of

passwords, misuse of cryptography, and traditional injection
vulnerabilities. Due to space limitations, individual results
for the general vulnerability analysis are reported in the

Application Analysis Results
In this section, we document the program analysis results

manual inspection of identified violations.

Table 2: Access of Phone Identifier APIs

w/ Permission�
105
184†
27
21
210†

Defined as having the READ_PHONE_STATE

Only 1 app did not also have the INTERNET

In this section, we explore how sensitive information is
hrough information sinks including

objects retrieved from URLConnections,
HTTP GET and POST parameters in HttpClient

URL objects. Future

We studied four phone identifiers: phone number, IMEI
(device identifier), IMSI (subscriber identifier), and ICC-ID
(SIM card serial number). We performed two types of

) we scanned for APIs that access identifiers, and
sis to identify code capable of

Table 2 summarizes APIs calls that receive phone
identifiers. In total, 246 applications (22.4%) included code
to obtain a phone identifier; however, only 210 of these

ve the READ_PHONE_STATE permission
required to obtain access. Section 5.3 discusses code that
probes for permissions. We observe from Table 2 that
applications most frequently access the IMEI (216
applications, 19.6%). The phone number is used second

(129 applications, 11.7%). Finally, the IMSI and ICC-

Table 3 indicates the data flows that exfiltrate phone
identifiers. The 33 applications have the INTERNET
permission, but 1 application does not have the READ_

ONE_STATE permission. We found data flows for all
four identifier types: 25 applications have IMEI data flows;
10 applications have phone number data flows; 5
applications have IMSI data flows; and 4 applications have

derstanding of how phone identifiers are
used, we manually inspected all 33 identified applications,
as well as several additional applications that contain calls
to identifier APIs. We confirmed exfiltration for all but one

code complexity hindered manual
confirmation; however we identified a different data flow
not found by program analysis. The analysis informs the

VVoolluummee--88,, NNuummbbeerr--22 JJaann--JJuunn

�

�

Finding 1 - Phone identifiers are frequently leaked
plaintext requests. Most sinks are HTTP
parameters. HTTP parameter names

Table 3: Detected Data Flows to Network Sinks

 Phone Identifiers

Sink # Flows

Apps
OutputStream 10 9 0
HttpClient Param 24 9 12
URL Object 59 19 49
Total Unique - 33 -

for the IMEI include: “uid,” “user-id,” “imei,” “devi
ceId,” “deviceSerialNumber,” “devicePrint,” “X
and “uniquely code”; phone number names include
“phone” and “mdn”; and IMSI names include “did”
“imsi.” In one case we identified an HTTP parameter for
the ICC-ID, but the developer mislabeled it “imei.”

Finding 2 - Phone identifiers are used as device fin
gerprints. Several data flows directed us towards code
that reports not only phone identifiers, but also other
phone properties to a remote server. For example, a wall
paper application (com.eoeandroid.eWallpapers.cartoon)
contains a class named SyncDeviceInfosService
lects the IMEI and attributes such as the OS ver
device hardware. The method sendDevice
this information to a server. In an-other application
(com.avantar.wny), the method
eStats.toUrlFormatedString() creates a URL parameter
string containing the IMEI, device model, platform, and
application name. While the intent is not clear, such fin
gerprinting indicates that phone identifiers are used for
more than a unique identifier.

Finding 3 - Phone identifiers, specifically the IMEI,
are used to track individual users.
applications contain code that binds the
a unique identifier to network requests.
ample, some applications (e.g.
com.nextmobileweb.craigsphone) appear to bundle the
IMEI in search queries; in a travel application
(com.visualit.tubeLondonCity), the method
Info() includes the IMEI in a URL; and a “keyring” appli
cation (com.froogloid.kring.google.zxing.clie
appends the IMEI to a variable named
LookupCmd. We also found functionality that in
the IMEI when checking for updates (e.g.,
com.webascender.callerid, which also includes the phone
number) and retrieving advertisements (see Fin
Furthermore, we found two applications (com.taobo.tao
and raker.duobao.store) with network ac
methods that include the IMEI for all con-nections. These
behaviors indicate that the IMEI is used as a form of
“tracking cookie”.

Finding 4 - The IMEI is tied to personally identifi
information (PII). The common belief that the
phone owner mapping is not visible outside the cellular
network is no longer true. In several cases, we found code
that bound the IMEI to account information and other PII.

nn 22001155 pppp.. 112211--113300�� ���� �����������	��	���
�� � � �
�����	�����
��

Phone identifiers are frequently leaked through
s are HTTP GET or POST

Table 3: Detected Data Flows to Network Sinks

Location Info.

Flows

Apps

0 0
12 4
49 10
- 13

id,” “imei,” “devi-
ceId,” “deviceSerialNumber,” “devicePrint,” “X-DSN,”
and “uniquely code”; phone number names include
“phone” and “mdn”; and IMSI names include “did” and
“imsi.” In one case we identified an HTTP parameter for

ID, but the developer mislabeled it “imei.”

Phone identifiers are used as device fin-
Several data flows directed us towards code

that reports not only phone identifiers, but also other
phone properties to a remote server. For example, a wall-
paper application (com.eoeandroid.eWallpapers.cartoon)

SyncDeviceInfosService that col-
h as the OS ver-sion and
sendDevice-Infos() sends

other application
(com.avantar.wny), the method Phon-

creates a URL parameter
odel, platform, and

application name. While the intent is not clear, such fin-
gerprinting indicates that phone identifiers are used for

Phone identifiers, specifically the IMEI,
Several

binds the IMEI as
For ex-

com.Qunar and
com.nextmobileweb.craigsphone) appear to bundle the
IMEI in search queries; in a travel application
(com.visualit.tubeLondonCity), the method refreshLive-

includes the IMEI in a URL; and a “keyring” appli-
cation (com.froogloid.kring.google.zxing.client.android)
appends the IMEI to a variable named retailer-

. We also found functionality that in-cludes
the IMEI when checking for updates (e.g.,
com.webascender.callerid, which also includes the phone
number) and retrieving advertisements (see Find-ing 6).
Furthermore, we found two applications (com.taobo.tao
and raker.duobao.store) with network ac-cess wrapper

nections. These
behaviors indicate that the IMEI is used as a form of

The IMEI is tied to personally identifi-able
The common belief that the IMEI to

phone owner mapping is not visible outside the cellular
network is no longer true. In several cases, we found code

information and other PII.

For example, applications (e.g. com.slacker.radio and
com.statefarm.pocketagent) include the IMEI in account
registration and login re-quests. In another application
(com.amazon.mp3), the method linkDevice()
IMEI. Code inspec-tion indicated that this method is
called when the user chooses to “Enter a claim code” to
redeem gift cards. We also found IMEI use in code for
sending comments and reporting problems (e.g.,
com.morbe.guarder and com.fm207.discount). Finally,
we found one application (com.andoop.highscore) that
appears to bundle the IMEI when submitting high scores
for games. Thus, it seems clear that databases containing
mappings between physical users and IMEIs are being
created.

Finding 5 - Not all phone identifier use leads to exfiltration.
Several applications that access phone identifiers
exfiltrate the values. For example, one application
(com.amazon.kindle) creates a device fingerprint for a
verification check. The fingerprint is kept in “secure
storage” and does not appear to leave the phone. An
application (com.match.android.matchmobile) as
phone number to a text field used for account registration.
While the value is sent to the network during registration,
the user can easily change or remove it.

Finding 6 - Phone identifiers are sent to advertisement and
analytics servers. Many applications have
analytics functionality. For example, in one application
(com.accuweather.android), the class ACCU
is an IMEI data flow sink. Another
(com.amazon.mp3) defines Android service component
AndroidMetricsManager, which is an IMEI data flow sink.
Phone identifier data flows also occur in ad libraries. For
example, we found a phone num-

ber data flow sink in the com/wooboo/adlib_android library
used by several applications (e.g., cn.ecook,
com.superdroid.sqd, and com.superdroid.ewc). Section 5.3
discusses ad libraries in more detail.

Location Information
Location information is accessed in two ways: (1) calling
getLastKnownLocation(), and (2) defining callbacks in
LocationListener object passed to
requestLocationUpdates(). Due to code recovery failures,
not all Location-Listener objects have corresponding
requestLocationUpdates() calls. We scanned for all three
constructs.

Table 4 summarizes the access of location information. In
total, 505 applications (45.9%) attempt to access location,
only 304 (27.6%) have the permission to do so. This
difference is likely due to libraries tha
permissions, as discussed in Section 5.3. The separation
between LocationListener and requestLocationUpdates()
primarily due to the AdMob library, which de
former but has no calls to the latter.

 To overcome missing code challenges, the data flow
source was defined as the getLatitude() and
methods of the Location object retrieved from
APIs. We manually inspected the 13 appli
location data flows. Many data flows appeared to reflect
legitimate uses of location for weather, classifieds, points
of interest, and social networking services. Inspection of
the remaining applications informs the following findings:

� � � �
�����	�����
�� ��

�����������

For example, applications (e.g. com.slacker.radio and
com.statefarm.pocketagent) include the IMEI in account

quests. In another application
linkDevice() includes the

tion indicated that this method is
called when the user chooses to “Enter a claim code” to
redeem gift cards. We also found IMEI use in code for
sending comments and reporting problems (e.g.,

discount). Finally,
we found one application (com.andoop.highscore) that
appears to bundle the IMEI when submitting high scores
for games. Thus, it seems clear that databases containing
mappings between physical users and IMEIs are being

Not all phone identifier use leads to exfiltration.
Several applications that access phone identifiers did not
exfiltrate the values. For example, one application
(com.amazon.kindle) creates a device fingerprint for a

t is kept in “secure
storage” and does not appear to leave the phone. An-other
application (com.match.android.matchmobile) as signs the
phone number to a text field used for account registration.
While the value is sent to the network during registration,

Phone identifiers are sent to advertisement and
Many applications have custom ad and

analytics functionality. For example, in one application
ACCUWX AdRequest

is an IMEI data flow sink. Another application
(com.amazon.mp3) defines Android service component

, which is an IMEI data flow sink.
Phone identifier data flows also occur in ad libraries. For

ber data flow sink in the com/wooboo/adlib_android library
used by several applications (e.g., cn.ecook,
com.superdroid.sqd, and com.superdroid.ewc). Section 5.3

ssed in two ways: (1) calling
, and (2) defining callbacks in a

object passed to
. Due to code recovery failures,

objects have corresponding
calls. We scanned for all three

Table 4 summarizes the access of location information. In
total, 505 applications (45.9%) attempt to access location,
only 304 (27.6%) have the permission to do so. This
difference is likely due to libraries that probe for
permissions, as discussed in Section 5.3. The separation

requestLocationUpdates() is
primarily due to the AdMob library, which de-fined the

s, the data flow
and getLongitude()

object retrieved from the location
manually inspected the 13 applications with

location data flows. Many data flows appeared to reflect
uses of location for weather, classifieds, points

vices. Inspection of
the remaining applications informs the following findings:

VVoolluummee--88,, NNuummbbeerr--22 JJaann--JJuunn

�

�

Finding 7 - The granularity of location reporting may
always be obvious to the user. In one application
(com.andoop.highscore) both the city/country
geographic coordinates are sent along with high scores.
Users may be aware of regional geographic information
associated with scores, but it was unclear
aware that precise coordinates are also used.
Finding 8 - Location information is sent to advertise
servers. Several location data flows appeared to
in network connections used to retrieve ads. For example,
two applications (com.avantar.wny and com.avantar.yp)
appended the location to the variable webAdURLString
Motivated by, we inspected the AdMob library to
determine why no data flow was found and determined
that source code recovery failures led to the false
negatives. Section 5.3 expands on ad libraries.

Phone Misuse
This section explores misuse of the smartphone inter
including telephony services, background record
audio and video, sockets, and accessing the list of installed
applications.

VIII. Study Limitations
Our study section was limited in three ways:
applications were selected with a bias towards popularity;
the program analysis tool cannot compute data and control
flows for IPC between components; and
recovery failures interrupt data and control flows. Missing
data and control flows may lead to false negatives. In
addition to the recovery failures, the program analysis tool
could not parse 8,042 classes, reducing coverage to 91.34%
of the classes.
Additionally, a portion of the recovered source code was
obfuscated before distribution. Code obfuscation
significantly impedes manual inspection. It likely exists to
protect intellectual property; Google suggests obfuscation
using ProGuard (proguard.sf.net) for applications using i
licensing service. ProGuard protects against readability and
does not obfuscate control flow. Therefore it has limited
impact on program analysis.
Many forms of obfuscated code are easily recognizable:
e.g., class, method, and field names are converted
letters, producing single letter Java filenames (e.g., a.java).
For a rough estimate on the use of obfuscation, we searched
applications containing a.java. In total, 396 of the 1,100
applications contain this file. As discussed in Section 5.3,
several advertisement and analytics libraries are obfuscated.
To obtain a closer estimate of the number of applications
whose main code is obfuscated, we searched for a.java
within a file path equivalent to the package name (e.g.,
com/foo/appname for com.foo.appname). Only 20
applications (1.8%) have this obfuscation property, which is
expected for free applications (as opposed to paid
applications). However, we stress that the a.java heuristic is
not intended to be a firm characterization of the percentage
of obfuscated code, but rather a means of acquiring insight.

IX. What This All Means
Identifying a singular take away from a broad study such as
this is non obvious. We come away from the study with two
central thoughts; one having to do with the study appa
and the other regarding the applications. ded and the
program analysis specifications are enabling technologies
that open a new door for application certification. We found

nn 22001155 pppp.. 112211--113300�� ���� �����������	��	���
�� � � �
�����	�����
��

The granularity of location reporting may not
In one application

(com.andoop.highscore) both the city/country and
geographic coordinates are sent along with high scores.
Users may be aware of regional geographic information
associated with scores, but it was unclear if users are
aware that precise coordinates are also used.

nformation is sent to advertisement
Several location data flows appeared to terminate

in network connections used to retrieve ads. For example,
.avantar.wny and com.avantar.yp)

webAdURLString.
AdMob library to

determine why no data flow was found and determined
that source code recovery failures led to the false

n 5.3 expands on ad libraries.

misuse of the smartphone interfaces,
ony services, background recording of

audio and video, sockets, and accessing the list of installed

Our study section was limited in three ways: a) the studied
applications were selected with a bias towards popularity; b)
the program analysis tool cannot compute data and control
flows for IPC between components; and c) source code

rupt data and control flows. Missing
data and control flows may lead to false negatives. In
addition to the recovery failures, the program analysis tool
could not parse 8,042 classes, reducing coverage to 91.34%

the recovered source code was
obfuscated before distribution. Code obfuscation
significantly impedes manual inspection. It likely exists to
protect intellectual property; Google suggests obfuscation
using ProGuard (proguard.sf.net) for applications using its
licensing service. ProGuard protects against readability and
does not obfuscate control flow. Therefore it has limited

Many forms of obfuscated code are easily recognizable:
e.g., class, method, and field names are converted to single
letters, producing single letter Java filenames (e.g., a.java).
For a rough estimate on the use of obfuscation, we searched
applications containing a.java. In total, 396 of the 1,100
applications contain this file. As discussed in Section 5.3,
everal advertisement and analytics libraries are obfuscated.

To obtain a closer estimate of the number of applications
whose main code is obfuscated, we searched for a.java
within a file path equivalent to the package name (e.g.,

o.appname). Only 20
applications (1.8%) have this obfuscation property, which is
expected for free applications (as opposed to paid
applications). However, we stress that the a.java heuristic is
not intended to be a firm characterization of the percentage
of obfuscated code, but rather a means of acquiring insight.

What This All Means
away from a broad study such as

obvious. We come away from the study with two
central thoughts; one having to do with the study apparatus,
and the other regarding the applications. ded and the

abling technologies
that open a new door for application certification. We found

the approach rather effective despite existing limitations. In
addition to further studies of this kind, we see the potential
to integrate these tools into an application certification
process. We leave such discussions for future work, noting
that such integration is challenging for both logistical and
technical reasons .On a technical level, we found the
security characteristics of the top 1,100 free popular
applications to be consistent with smaller studies. Our
findings indicate an overwhelming concern for misuse of
privacy sensitive information such as phone identifiers and
location information. One might speculate this occur due to
the difficulty in assigning malicious intent.
Arguably more important than identifying the exis
information misuse, our manual source code inspection
sheds more light on how information is mis
phone identifiers, e.g., phone number, IMEI, IMSI, and
ICC-ID, were used for everything from “cookie
tracking to account numbers. Our findings also support the
existence of databases external to cellular providers that link
identifiers such as the IMEI to personally identifiable
information.
Our analysis also identified significant penetration of ad and
analytic libraries, occurring in 51% of the studied
applications. While this might not be surprising for free
applications, the number of ad and analytics libraries
included per application was unexpected. One application
included as many as eight different libraries. It is unclear
why an application needs more than one advertisement and
one analytics library.
From a vulnerability perspective, we found that many
developers fail to take necessary security precautions. For
example, sensitive information is frequently written to
Android’s centralized logs, as well as occasionally
broadcast to unprotected IPC. We also identified the
potential for IPC injection attacks; however, no cases were
readily exploitable.
Finally, our study only characterized one edge of the
application space. While we found no evidence of tele
misuse, background recording of audio or video, or abusive
network connections, one might argue that such malicious
functionality is less likely to occur in popular applications.
We focused our study on popular applications to
characterize those most frequently used. Future studies
should take samples that span applic
However, even these samples may miss the existence of
truly malicious applications. Future studies should also
consider several additional attacks, including installing new
applications , JNI execution , address book exfiltration,
destruction of SDcard contents, and phishing

X. Related Work

Many tools and techniques have been designed to identify
security concerns in software. Software written in C is
particularly susceptible to programming errors that result in
vulnerabilities. Ashcraft and Engler use compiler extensions
to identify errors in range checks. MOPS uses model
checking to scale to large amounts of source code
applications are inherently safer than C ap
avoid simple vulnerabilities such as buffer overflows.
and Fox compare eight different open source and
commercially available Java source code analysis tools,
finding that no one tool detects all vulnerabilities.
Hovemeyer and Pugh study six popular Java applications
and libraries using FindBugs extended
checks. While analysis included non security bugs, the
results motivate a strong need for automated analysis by all

� � � �
�����	�����
�� ��

�����������

spite existing limitations. In
urther studies of this kind, we see the potential

to integrate these tools into an application certification
process. We leave such discussions for future work, noting
that such integration is challenging for both logistical and

hnical level, we found the
security characteristics of the top 1,100 free popular
applications to be consistent with smaller studies. Our
findings indicate an overwhelming concern for misuse of
privacy sensitive information such as phone identifiers and
location information. One might speculate this occur due to
the difficulty in assigning malicious intent.

n identifying the existence the
information misuse, our manual source code inspection

is misused. We found
phone identifiers, e.g., phone number, IMEI, IMSI, and

sed for everything from “cookieesque”
tracking to account numbers. Our findings also support the
existence of databases external to cellular providers that link

ifiers such as the IMEI to personally identifiable

Our analysis also identified significant penetration of ad and
analytic libraries, occurring in 51% of the studied
applications. While this might not be surprising for free

number of ad and analytics libraries
included per application was unexpected. One application
included as many as eight different libraries. It is unclear
why an application needs more than one advertisement and

perspective, we found that many
developers fail to take necessary security precautions. For
example, sensitive information is frequently written to
Android’s centralized logs, as well as occasionally
broadcast to unprotected IPC. We also identified the

tential for IPC injection attacks; however, no cases were

Finally, our study only characterized one edge of the
le we found no evidence of telephony

misuse, background recording of audio or video, or abusive
ork connections, one might argue that such malicious

functionality is less likely to occur in popular applications.
We focused our study on popular applications to
characterize those most frequently used. Future studies
should take samples that span application popularity.
However, even these samples may miss the existence of
truly malicious applications. Future studies should also
consider several additional attacks, including installing new

dress book exfiltration,
Dcard contents, and phishing .

Many tools and techniques have been designed to identify
security concerns in software. Software written in C is
particularly susceptible to programming errors that result in

and Engler use compiler extensions
to identify errors in range checks. MOPS uses model
checking to scale to large amounts of source code . Java

herently safer than C applications and
nerabilities such as buffer overflows. Ware

and Fox compare eight different open source and
commercially available Java source code analysis tools,

no one tool detects all vulnerabilities.
opular Java applications

braries using FindBugs extended with additional
security bugs, the

results motivate a strong need for automated analysis by all

VVoolluummee--88,, NNuummbbeerr--22 JJaann--JJuunn

�

�
developers. Livshits and Lam focus on Java
applications. In the Web server environment, inputs are
easily controlled by an adversary, and left unchecked can
lead to SQL injection, crosssite scripting, HTTP re
splitting, path traversal, and command injection. Felmetsger
et al also study Java based web applications; they advance
vulnerability analysis by providing automatic detection of
application specific logic errors.
Spyware and privacy breaching software have also been
studied. Kirda et al. consider behavioral properties of BHOs
and toolbars. Egele et al. target information leaks by
browser based spyware explicitly using dynamic taint
analysis. Panaorama considers privacy breaching malware
in general using whole system, fine grained
Privacy Oracle uses differential black box fuzz testing to
find privacy leaks in applications.
On smartphones, TaintDroid uses system
taint tracking to identify privacy leaks in An
applications. By using static analysis, we were able to study
a far greater number of applications (1,100 vs. 30).
However, TaintDroid’s analysis confirms the exf
information, while our static analysis only con
potential for it. Kirin also uses static anal
on permissions and other application configuration data,
whereas our study analyzes source code. Finally, PiOS
performs static analysis on iOS applications for the iPhone.
The PiOS study found the majority of analyzed applications
to leak the device ID and over half of the applications
include advertisement and analytics libraries.

XI. Conclusions
objective behind this paper presentation was to discuss all
basic details to start android application and to overcome
the technical jargons which come as a big constraint on the
way of beginner programmer. Smartphones are rapidly
becoming a dominant computing platform. Low barriers of
entry for application developers increases the security risk
for end users. In this paper, we described the ded
decompiler for Android applications and used decompiled
source code to perform a breadth study of both
functionality and vulnerabilities. While our findings of
exposure of phone identifiers and location ar
with previous studies, our analysis framework allows us to
observe not only the existence of dangerous functionality,
but also how it occurs within the context of the application.
Moving forward, we foresee ded and our analysis
specifications as enabling technologies that will open new
doors for application certification. However, the integratio
of these technologies into an application certification
process requires overcoming logistical and technical
challenges. Our future work will consider these chal
and broaden our analysis to new areas, including application
installation, malicious JNI, and phishing.

XII. References
[1] http://developer.android.com
[2]nternational Journal of Scientific and Research

Publications,Volume 4, Issue 2, February
2014,ISSN 2250-3153

[3] STORM, D. Zombies and Angry Birds attack:
mobile Phone malware. Computerworld
(November 2010).

nn 22001155 pppp.. 112211--113300�� ���� �����������	��	���
�� � � �
�����	�����
��

focus on Java based Web
applications. In the Web server environment, inputs are

led by an adversary, and left unchecked can
te scripting, HTTP response

nd injection. Felmetsger
based web applications; they advance

omatic detection of

Spyware and privacy breaching software have also been
studied. Kirda et al. consider behavioral properties of BHOs
and toolbars. Egele et al. target information leaks by

explicitly using dynamic taint
breaching malware

grained taint tracking.
uses differential black box fuzz testing to

uses system wide dynamic
to identify privacy leaks in Android

applications. By using static analysis, we were able to study
a far greater number of applications (1,100 vs. 30).
However, TaintDroid’s analysis confirms the exfiltration of

le our static analysis only confirms the
also uses static analysis, but focuses

on permissions and other application configuration data,
s source code. Finally, PiOS

tatic analysis on iOS applications for the iPhone.
The PiOS study found the majority of analyzed applications
to leak the device ID and over half of the applications
include advertisement and analytics libraries.

resentation was to discuss all
basic details to start android application and to overcome
the technical jargons which come as a big constraint on the

Smartphones are rapidly
becoming a dominant computing platform. Low barriers of
entry for application developers increases the security risk
for end users. In this paper, we described the ded
decompiler for Android applications and used decompiled

ode to perform a breadth study of both dangerous
nerabilities. While our findings of

exposure of phone identifiers and location are consistent
ies, our analysis framework allows us to

dangerous functionality,
but also how it occurs within the context of the application.
Moving forward, we foresee ded and our analysis
specifications as enabling technologies that will open new
doors for application certification. However, the integration
of these technologies into an application certification
process requires overcoming logistical and technical

e work will consider these challenges,
and broaden our analysis to new areas, including application

[2]nternational Journal of Scientific and Research
Publications,Volume 4, Issue 2, February

[3] STORM, D. Zombies and Angry Birds attack:
mobile Phone malware. Computerworld

� � � �
�����	�����
�� ��

�����������

